Partition Dependence and Subjective Probabilities: Problem and Solution

> **Bob Clemen Duke University**

With Craig Fox, Canan Ulu

Psychology and Decision Analysis: The New Wave

- Using psychological models to develop precise prescriptive methods
 - Preferences
 - Peter Wakker and colleagues: Distortions due to Prospect Theory
 - Anderson & Hobbs: Scale compatibility bias
 - Delquie: Optimal trade-off assessment
 - Probabilities
 - Clemen & colleagues:

Adjusting probabilities for overconfidence

→ Counteracting partition dependence

FTSE 100 Stock Index Closing value, Oct 21, 2005

Group 1

Assess probabilities for these events:

- FTSE ≤ 4200
- 4200 < FTSE ≤ 4800
- 4800 < FTSE ≤ 5500
- 5500 < FTSE ≤ 6300
- 6300 < FTSE

Group 2

Assess probabilities for these events:

- FTSE ≤ 2800
- 2800 < FTSE ≤ 3200
- 3200 < FTSE ≤ 3700
- 3700 < FTSE ≤ 4200
- 4200 ≤ FTSE

Overview

- The partition dependence phenomenon
- A psychological model of probability judgment
- A prescriptive solution

Beyond Heuristics and Biases: Support Theory

Given a specified event partition:

$$\underline{\mathbf{A}} \quad \underline{\sim} \mathbf{A} \qquad P_A = \frac{S_A}{S_A + S_{\sim A}}$$

Tversky and Koehler (1994) Rottenstreich & Tversky (1997)

<u>A</u><u>B</u><u>C</u> $P_A = \frac{S_A}{S_A + S_B + S_C}$ Brenner & Koehler (1999)

A is called the "focal" hypothesis; $\sim A$ or $B \cup C$ is "alternative."

S is positive-valued support function. Unobservable.

Another Strategy: The Principle of Insufficient Reason

(Leibniz, 1678; Laplace, 1776)

"If we see no reason why one case should happen more than the other then probability should be defined in terms of a ratio among cases"

Anchoring on the Ignorance Prior

What is the probability of rain tomorrow?

Adjustment is usually insufficient \rightarrow *Partition dependence*

Fischhoff, Slovic, Lichtenstein (1978). Fault trees. J Exp Psych.

Explanations for Pruning Bias

Availability: "Out of sight is out of mind"

Fischhoff, Slovic & Lichtenstein (1978), Russo & Kolzow (1994) Ofir (2000), Van der Plight et al (1987)

Ambiguity: "What category does this event belong to?" Hirt & Castellan (1988)

Credibility: "Each specified event must have some non-trivial probability."

(An example of a *demand effect*: "What is the analyst looking for?") Dube-Rioux & Russo (1988)

Our five studies

- Duke MBA students
- Some results:
 - Not just availability!
 - "Ignorance" \rightarrow strong partition dependence
 - Knowledge reduces the effect
 - Not just a "demand effect"
 - Even experts are susceptible

Study 1: Categorical Partitions (Fault Tree)

Study 2: Judgment Under Ignorance

246 Duke MBA students judged future close of JSX

A) less than 500
B) at least 500 but less than 1000
C) at least 1000

a) less than 500

- b) at least 500 but less than 1000
- c) at least 1000 but less than 2000
 d) at least 2000 but less than 4000
 e) at least 4000 but less than 8000
 f) more than 8000

f) more than 8000

	<u>median P</u>	<u>% take \$30</u>
P(A or B) =	0.67	55
P(a or b) =	0.30 <i>p</i> =0.02	31 <i>p</i> =0.006
$P(\mathbf{C}) =$	0.25	28
P(c or d or e or f) =	0.60 <i>p</i> =0.001	58 <i>p</i> =0.001

Study 3: Manipulating Knowledge

Duke MBA starting salary

Harvard Law starting salary

Study 3 Results

Duke MBA students in decision analysis elective (n=120)

Median knowledge of Duke MBA salaries:7/10Median knowledge of Harvard Law salaries:2/10

	Duke MBA		Harva	rd Law
	<\$85K	≥\$85K	<\$90 K	≥ \$90K
Low	<u>0.75</u>	0.25	<u>0.75</u>	0.25
High	0.40	<u>0.60</u>	0.30	<u>0.70</u>

= packed
bold = separate evaluation

Overall test for partition dependence: p < 0.0001

Less knowledge \rightarrow Stronger effect But barely significant: p=0.05 (t-test)

Study 4: Does the Partition Convey Information?

What is the last digit of your local telephone number?

If this number is *even*, please write "JSX" in the space provided above the tree on the *left* and "NASDAQ" in the space provided above the tree on the *right*.

If this number is *odd*, please write "NASDAQ" in the space provided above the tree on the *left* and "JSX" in the space provided above the tree on the *right*.

FTSE 100 Stock Index Closing value, Oct 21, 2005

Group 1

Assess probabilities for these events:

- FTSE ≤ 4200
- 4200 < FTSE ≤ 4800
- 4800 < FTSE ≤ 5500
- 5500 < FTSE ≤ 6300
- 6300 < FTSE

Group 2

Assess probabilities for these events:

- FTSE ≤ 2800
- 2800 < FTSE ≤ 3200
- 3200 < FTSE ≤ 3700
- 3700 < FTSE ≤ 4200
- 4200 ≤ FTSE

Study 4: Results: JSX

Median knowledge rating: 0/10

Study 4 Results: NASDAQ

Median knowledge rating: 7/10

Study 4 Results Summary

Weekend Executive MBA students (n = 102)

= packed
bold = separate evaluation

Overall test for partition dependence: p < 0.0001

NOTE: Partition dependence disappears for "experts" on NASDAQ (knowledge \geq 7)

Can't attribute effect to information content of partitions (Grice 1975)

Study 5: Probability Assessment Experts

<u>Survey:</u> Members on the Decision Analysis Society email list (n = 55)

- Approached by e-mail
- 86% have Ph.D.
- 75% have taught course in Decision Analysis
- 63% have elicited probabilities for applied DA project in last 2 years
- Total of 156 projects over previous two years

Study 5: Method

What is the last digit of your local telephone number?

If this number is *even*, please write "DAS" in the space provided above the tree on the *left* and "SQA" in the space provided above the tree on the *right*.

If this number is *odd*, please write "SQA" in the space provided above the tree on the *left* and "DAS" in the space provided above the tree on the *right*.

Study 5 Results

DAS email list (n=55)

= packed
<u>bold</u> = separate evaluation

Overall test for partition dependence: p < 0.0001

NOTE: No knowledge effect

Even we are susceptible!

Study 5: Super Experts

25 Experienced Decision Analysts

- Ph.D. in 1985 or earlier AND
- At least one applied project in last 2 years AND
- Taught at least one course in Decision Analysis

	$D_{\mathcal{A}}$	15	SQA		
	≤1000	>1000	≤ 1000	>1000	
Low	<u>0.88</u>	0.12	<u>0.80</u>	0.20	
High	0.75	<u>0.25</u>	0.58	<u>0.42</u>	

= packed
bold = separate evaluation

Overall test for partition dependence: p=0.05

"You know who you are"

How big is the problem?

What methods do we use to assess to assess continuous probability distributions?

Methods used:

- Ask for probabilities of pre-specified intervals: 58% of the time
- Ask for percentiles of a distribution: 56% of the time

Stages in Probability Assessment

26

	Interpret events	Evaluate support/evidence	Assign probabilities
Mechanisms	Availability, Ambiguity	Judgmental heuristics, credibility assumptions	Ignorance prior
How to counteract • Clarity test • Careful conditioning of experts		 Develop partition with expert. Expert articulates reasoning, assumption, information sources 	 Careful specification of partition Explore state space "evenhandedly" Use multiple partitions
	Existing Be	est Practice	New 26

What about using a model to debias judgments?

Imagine a state space partitioned into *k* events

Multiplicative model from Fox & Rottenstreich (2003):

$$R(A,\overline{A}) = \left[\frac{1}{k-1}\right]^{\lambda} \left[\frac{s(A)}{s(\overline{A})}\right]^{1-\lambda}$$

Linear model from Clemen & Ulu (2005):

$$P(A) = \alpha s^*(A) + (1 - \alpha)(1/k)$$

$$P(A) = \alpha s^*(A) + (1-\alpha)(1/k)$$

$$0 \le \alpha \le 1$$

 $s^* \ge 0, \Sigma s^* = 1, s^*(A \cup B) = s^*(A) + s^*(B)$

s*(A)

Interpretations of s^*

- Normalized support
- "True" or "covert" probability

A Bayesian Interpretation

Bayesian updating of ignorance prior based on recruited support s^* . Model: Judge has a prior for an unknown probability (parameter of a Bernoulli process), treats recruited support as equivalent sample information.

Some properties of the model

Known properties of subjective probabilities:

Binary complementarity

Complementary probabilities sum to one

 Subadditivity of directly-assessed probabilities increases with size of partition.

Subjective probabilities sum to more than one

Ignorance-prior effect

The less knowledge, the closer the probabilities are to equality

• $A \cup B \neq$ sure event

Empirical observation of IA by Wu and Gonzalez (1999)

New properties

Interior additivity

 $P'_2(A) = P_{AB} - P_B = P_{AC} - P_C$ for any *B*, *C* (no null or sure events)

 Indirect probabilities are less than direct probabilities

$$P'_{2}(A) = P_{AB} - P_{B} = \alpha \left[s^{*}(AB) - s^{*}(B) \right] = \alpha s^{*}(A)$$
$$\leq \alpha s^{*}(A) + \beta = P_{A}$$

- Superadditivity of indirect probabilities
 Indirect probabilities sum to less than 1.
- "Flip-flop" effect $P'_{3}(A) = P_{AB} + P_{BC} - P_{ABC} = P_{A}$ $P'_{4}(A) = P_{AB} + P_{CD} - P_{BC} - P_{D} = P'_{2}(A)$ Indirect Direct P'_{A2} P_{A} P'_{A4} P'_{A3} 32

Summary

H1a	Interior additivity of P'_2		
H1b	$\sum P'_i = K$. Sum of indirect probs constant for all assessment structures.		
H2	Indirect probabilities are less than direct probabilities		
H3	Indirect probabilities add to less than one (superadditivity)		
H4a H4b	Flip-Flop effect	For 3-element probs For 4-element probs	

Data from Tversky & Fox (1995)

- Probability assessments for
 - 1991 NBA games: Trailblazers vs Jazz
 - 1992 Superbowl: Bills vs Redskins
 - Dow Jones Industrial Average the following week
 - High temperatures in San Francisco & Beijing

Many assessments for each variable

20 different assessments for temperature. Similar for others.

Aggregate results - TF

	# of		# of rejections for significance			nce level
Hypothesis	Test	tests	0.001	0.01	0.05	0.20
H1a: Interior Additivity	Wilcoxon	292	2	16	25	33
H1b: IA – Constant sum	Wilcoxon	50	3	5	10	14
H2: Indirect < Direct	Wilcoxon	262	163	215	241	249
H3: Superadditivity	Sign	107	91	100	104	107
H4a: Flip-flop for 3	Wilcoxon	64	5	6	8	14
H4b: Flip-flop for 4	Wilcoxon	52	2	7	9	17

Two new studies

- TF assessment conditions:
 - No constraints imposed
 - Probabilities assessed one at a time, not the entire partition.
- In our studies
 - Constrain $P_{AB} > P_A$ to ensure positive indirect probabilities
 - Assessed all probabilities at the same time
 - More similar to realistic decision or risk analysis
 - Expect smaller effect for
 - H2 (indirect<direct)
 - H3 (superadditivity of indirect)

Assessment tasks

Questions asked

- "In each of the spaces provided below, please write your best estimate of the probability that the high temperature in Durham on March 1, 2003, will fall in the designated range."
- "In each of the spaces provided below, please write your best estimate of the probability that the NASDAQ Stock Index will close in the designated range on December 31, 2004."
- "In each of the spaces provided below, please write your best estimate of the probability that the salary of a 2003 Fuqua School of Business MBA graduate will fall in the designated range."
- "In each of the spaces provided below, please write your best estimate of the probability that the grade point average (GPA) of a random student from 2004 Fuqua MBA class will fall in the designated range at the end of Spring 2003."
- "In each of the spaces provided below, please write your best estimate of the probability that the monthly rent of an apartment with 2 bedrooms within 2 miles of the Fuqua School of Business will fall in the designated range."

Example assessment screen. $n_1 = 77$, $n_2 = 118$

Assessment

In each of the spaces provided below, please write your best estimate of the probability that the NASDAQ Stock Index will close in the designated range on December 31, 2004.

(a)	Below 2600	50	%
(b)	Between 2000 and 2600	30	%
(c)	2600 or more	50	%
(d)	Below 2000	10	%
(e)	2000 or more	5	%
(f)	Between 1400 and 2600	20	%
(g)	Below 1400	80	%
(h)	Between 1400 and 2000	20	%
(i)	1400 or more	20	%

Coherence checks

Please revise your assessments considering the following;

The answer you gave in part(g)should be less than or equal to the answer you gave in part (d).

The answer you gave in part(h) should be less than or equal to the answer you gave in part (d).

The answer you gave in part (b) should be less than or equal to the answer you gave in part (f).

The answer you gave in part (b) should be less than or equal to the answer you gave in part (e).

The answer you gave in part (c) should be less than or equal to the answer you gave in part (e).

The answer you gave in part (a) should be less than or equal to the sum of the answers you gave in parts(d) and (f).

After having revised your assessments, please click OK button below when you want to submit your assessments.

Aggregate results

	# of		# of rejections for significance leve			
Hypothesis	Test	tests	0.001	0.01	0.05	0.20
H1a: Interior Additivity	Wilcoxon	90	0	0	3	9
H1b: IA – Constant sum	Wilcoxon	10	0	0	2	3
H2: Indirect < Direct	Wilcoxon	140	20	38	48	64
H3: Superadditivity	Sign	30	10	14	17	21
H4a: Flip-flop for 3	Wilcoxon	20	0	0	2	3

 $= S^*(A)$

Does it work?

- Study 3 to test performance of the procedure
- $n_3 = 85$ grad students
- Each one made interval assessments for four different variables
 - Two conditions: Direct and Indirect
 - 4 questions taken from a pool of 100 (half familiar "everyday" questions, half almanac)
 - Assessment intervals created randomly
 - Knowledge ratings on the variables

Results

Difference from "ignorance prior"

Indirect probabilities are farther away (statistically significant)

Accuracy (Brier Score)

Inconclusive results Indirect Probs perform slightly better for highknowledge questions.

Results

Probability scores, decomposed into reliability (calibration) and resolution:

		Indirect	Direct
All data	Base score	0.730	0.727
	Reliability	0.530	0.500
	Resolution	0.447	0.414
	Total	0.818	0.813
Low knowledge	Base score	0.743	0.721
	Reliability	0.649	0.584
	Resolution	0.571	0.525
	Total	0.821	0.780
High knowledge	Base score	0.701	0.733
	Reliability	0.629	0.665
	Resolution	0.515	0.549
	Total	0.815	0.848

Summary

- Partition dependence is a real and insidious phenomenon.
- Linear probability model is consistent with support theory, partition dependence, interior additivity.
 - Evidence for the model is strong.
- Sharp prescriptive implication: Normalize indirect probabilities.
 - Performance test shows
 - Indirect probs farther from ignorance prior
 - Little difference in average score
- Decision analysis beginning to use behavioral results to develop sharp prescriptive procedures.
 - Stay tuned for new developments!