Quantitative benefit-risk assessment: An analytical framework for a shared understanding of the effects of medicines

Patrick Ryan
21 April 2010

Challenges in understanding the effects of medicines

Benefit-risk analysis process

*tailored to the complexity of the decision

Diversity of data availability

Components of an analysis framework

- Define decision
- Identify health outcomes
- Synthesize data
- Model decision and conduct analysis
- Interpret and evaluate results

PhRMA Benefit Risk Action Team (BRAT) Framework

- A set of principles, processes and tools to guide decisionmakers in
- Selecting
- Organizing
- Understanding
- Summarizing

Evidence relevant to benefit-risk decisions

Levitan and Andrews, "Example Application of PhRMA BRAT (Benefit-Risk Action Team) Framework", Assessing Benefits and Risks of Medicinal Products in Regulatory Decisions, DIA, Nov, 2009

Define decision

- Multiple stakeholders face decisions throughout the medical product lifecycle:

Industry : Do we continue investing?
Regulatory: Do we approve?
Payer: Do we reimburse?
Provider: Is this best for my patients?
Patient: Is this the best drug for me?

- Analysis needs to be flexible to accommodate diverse perspectives to inform stakeholder decision-making processes

Illustrative example: Identify health outcomes

No
Disease \& AE

Illustrative example: Transitions between health states

Illustrative example: Transitions between health states

Illustrative example: Building a full model

Illustrative example: Modeling meets data challenges

What if there are no data available to characterize adverse event resolution?

Comparing alternative treatments

Potential tradeoffs in a benefit-risk analysis

- Competing risks

Ex: rofecoxib vs. NSAID: GI bleed vs. acute myocardial infarction

- Competing benefits

Ex: RA: inflammation pain relief vs. QoL measures

- Higher benefit and higher risk

Ex: natalizumab: MS treatment vs. PML

- Outcomes occurring at different times

Ex: chemotherapy: immediate nausea, alopecia vs. long-term survival

- Varying uncertainty

Ex: Typical vs. atypical antipsychotics

Any or all of these tradeoffs can play out in a given decision:
Multiple competing benefits with multiple competing risks over time

Translating concept into practice

Ideal scenario

Each drug has one dose
Patient data for both drugs
Clear choice of $\mathrm{B} \& \mathrm{Hs}$
\qquad

All B\&H reported as rates \qquad
Event times are equally spaced....
Undisputed trade-offs \qquad
Events occur independently.........
Patients have same baseline risks.

Real scenario

Multiple dose regimens
Aggregate summaries from literature
Single AEs or 'Any Grade 4'?
Mix of rates, ratios, means
Event are sporadic or nonlinear
No preference data
Don't know if events are correlated
Different patient subgroups

Real example: Adjuvant therapy

Assumptions:
-Treatment is 1yr, so AE rates only occur within 1 yr , then same as control.
-AE onset are tunnel states ($\mathrm{t}=0$)
-AEs: Hy’s Law, LVEF decreased, CHF
-Recurrence rate independent of AEs
-Hypothetical cohort of 10,000 patients for 4 years, with 1 month transition periods

Real example: Preventative Therapy

Identify Health States

Set Objective Selection Criteria:

- Clinical benefits
- Functional/ QoL harms or benefits
- AEs ocurring in $>\underline{x} \%$ of patients
- AEs graded \underline{x} or higher
- AEs related to treatment discontinuation
- AEs with known drug class effects
- AEs that are nonreversible
- Rare AEs that received regulatory warnings

Determine which health states should be combined into a single state or split into two states.

Decide best length of time for 1 event per interval.

Synthesizing Data
 ex. preventative therapy

Synthesizing Data continued

Data Limitation
 Assumption?

Data come from ≥ 1 study
Safety data for combined doses
Safety data reported as cumulative incidence
An AE is not reported for comparator

Study populations are comparable
Safety events are not dose-related
Events occur at a constant rate
Probability is either 0 or below x\%

Integrate Data into Analysis

There are many methods for integrating the data.
A few examples include:
Decision Trees
Markov Models
Discrete-event simulation
etc.
Your choice may depend on decisions around :
Data (individual patient data vs. summary statistics)
Uncertainty (patient, outcome \& parameter variability)
Output Metrics (Person-time, INB, QALYs, etc.)

Visualization of Output: No. of patients in each health state by month

Person status at 12 months

Visualization of Output: Person-time in each health state by month 12

BRAT Framework Key Benefit-Risk Summary Table

- Top level representation of information in the framework
- The most critical view that decision makers will have on the data

		Outcome	Incidence: study drug (\%)	Incidence: placebo (\%)	Adjusted RR (95\% CI)	Forest Plot of Adjusted RR (Log Scale)	
Benefits	Cardiovascular Issues	Angina requiring CABG	0.11	0.19	0.59 (0.32, 1.10)	$\xrightarrow{-}$	
		Coronary heart disease death	1.52	1.65	1.00 (0.64, 1.56)		
		Lipid levels meet target*	67.00	29.00	2.12 (1.77, 2.55)		
		Nonfatal myocardial infarction	0.66	1.30	$0.51 \quad(0.05,5.56)$		
	Ischemic Stroke	Fatal ischemic stroke	0.91	1.73	$0.57 \quad(0.35,0.95)$		
		Nonfatal ischemic stroke	2.34	2.88	0.84 (0.71, 0.98)		
Risks	Liver Damage	Hepatitis with hospitalization	-	-	-	\rightarrow	
		Hepatitis without hospitalization	-	-	-		
		Liver failure*	0.013	0.0095	1.35 (0.16, 11.69)		
		Persistently elevated transaminases	0.26	0.19	1.35 (0.80, 2.29)		
	Muscle Damage	Myopathy	0.11	0.10	1.11 (0.52, 2.37)	\cdots	
		Rhabdomyolysis*	0.011	0.01	1.11 (0.13,9.59)		
		Severe rhabdomyolysis leading to kidney failure*	0.0006	0.0005	1.11 (0.07,25.61)		
* Mock data for visualization purpose only					Favors Favors placebo drug	1 1 0.1 1.0 10.0	

Levitan and Andrews, "Example Application of PhRMA BRAT (Benefit-Risk Action Team) Framework", Assessing Benefits and Risks of Medicinal Products in Regulatory Decisions, DIA, Nov, 2009

Evaluate results

Check the robustness of the results

- Are the assumptions still reasonable?
- Do sensitivity analyses show which factors drive the results?
- Do utilities or preference weights shift the emphasis?

Does the analysis need more data or fewer assumptions?

Is the information provided sufficient for clear \& transparent decision-making?

Concluding thoughts

- The goal is to gain a "shared understanding" of benefit:risk trade-offs between alternative treatments
- Explicitly stated data \& modeling assumptions add transparency to direct and indirect comparisons
- The primary limitation is often available data rather than methodology
- Stakeholders can explore a range of benefit:risk tradeoffs, from a patient to societal perspectives
- Statisticians have a significant opportunity to lead this quantitative process to meaningfully inform the appropriate use of medical products

Benefit-risk analysis: enabling the view of the bigger picture

Questions?

Mike Colopy
mike.w.colopy@gsk.com

Patrick Ryan
patrick.b.ryan@gsk.com

Gsk $_{\text {Caxassinithine }}$

The End

Backup Slides

Definitions

Term	Definition
Discrete-event simulation	Models events that occur at an instant in time, marking a change of state; assess individual patients sampled from distributions of baseline characteristics.
Markov model	Models uncertain events as transitions between health states; assesses a cohort's risk over time. Transition probability does not depend on previous transition.
Uncertainty	Variability in patients, subgroups, outcomes, parameters and model specifications.
Utility	Weighted conversion used to normalize benefits and harms to the same scale; e.g. health-related quality of life or conjoint preference weights.
Value Tree	

Recommended Reading

Lynd L and O-Brien B, Advances in risk-benefit evaluation using probabilistic simulation methods: an application to the prophylaxis of deep vein thrombosis, Journal of Clinical Epidemiology 57 (2004) 795-803. Keywords: Monte Carlo simulation.

Lynd L, et.al. Using the Incremental Net Benefit Framework for Quantitative Benefit-Risk Analysis in Regulatory Decision-Making-A Case Study of Alosetron in Irritable Bowel Syndrome, Value in Health, 2009. Keywords: Discrete-event simulation.

Mussen F, et. al. A quantitative approach to benefit-risk assessment of medicines - part 1: The development of a new model using multi-criteria decision analysis, Pharmacoepidemiology and Drug Safety, 2007. Keyword: Value tree.

Minelli C, et. al., Benefits and harms associated with hormone replacement therapy: clinical decision analysis, BMJ 2004. Keywords: Markov Chain Monte Carlo Simulation.

