Case Study: Decision Analysis for New Atherosclerosis Drug

Assessing Consistent Probabilities of Success for Drug Development Decision Analysis

2010 DAAG Conference
Dave Swank
Technical Director,
Portfolio & Asset Strategy
Bristol-Myers Squibb

Case Study: New drug development strategy for atherosclerosis

- Atherosclerosis continues to cause significant morbidity and mortality despite availability of statins
- Sales potential for an effective new drug could easy be several billion dollars, but . . .
- Atherosclerosis presents many challenges for drug development, especially drugs with novel mechanisms
 - Final stage of development requires expensive (>\$500M) and time consuming mortality and morbidity studies
 - Lack of predictive and inexpensive biomarkers or imaging technologies to significantly buy-down risk prior to M&M study
 - Overall probability of success is 3-5% starting from first in human testing, much lower than other disease areas

Case study background

- Novel drug in development for atherosclerosis was poised to begin first studies in patients (PIIA) in about 12 months
- Team was challenged to find creative development alternatives that manage cost and risk while optimizing value
- Team identified three broad development themes
 - "Fast to M&M"
 - "Plaque Regression" PIIB (imaging endpoint)
 - "Multiple novel biomarkers" in PIIA

1) "Fast to M&M"

Do minimum development (establish safety profile) prior to starting M&M study

Pros

- Minimizes cost of PII
- Results in earliest launch
- Minimizes probability of false negative in PII

Cons

High probability of failure of expensive M&M study

2) "Plaque Regression" PIIB

 Use large imagining studies to show in PIIB that drug reduces and/or stabilizes plaque

Pros

- Reduces risk of expensive M&M study failure
- Approach was used for development of many statins

Cons

- Imaging PII cost makes this the most expensive option
- Latest launch date due to duration of study (by 2 or 3 years)
- Imaging not particularly strong predictor of M&M success, especially for drug's with novel mechanisms

This option was management's "momentum plan"

3) "Multiple Biomarkers" PIIA

Use several biomarker based PII studies to buy down some risk prior to M&M study

Pros

- Demonstrates drug reaches desired biologic targets prior to PIII
 - Not reaching target would be strong "No Go"
- Low incremental cost on top of "Fast to M&M"
- Approximately same launch date as "Fast to M&M" strategy

Cons

- Could increase risk of false negative in PII
- Risk of M&M failure will still be high

Probability of success assessment is key to valid evaluation of development alternatives

- Small differences in probability assessments have a large impact on valuation because of high commercial value and high development costs
- Critical to have logical, scientific based approach to assessments in order to obtain valid assessments and team buy-in
- Traditional approaches to probability assessment do not meet these criteria

Approach to assessing internally consistent probabilities for drug development analyses

- Assess the probability the drug truly works (safe and efficacious)
 - Assumption is same for all development alternatives
- 2. Assess sensitivity and specificity of each study after discussion of the study designs and "go/no go" criteria
 - Sensitivity is the probability study with give "Go" result when the drug does work
 - Specificity is the probability study will give "No Go" result when the drug does not work
 - Sensitivity and specificity are functions of statistical designs, the level of "surrogacy" of the endpoints used, and the nature of the drug
- 3. Calculate probabilities of success
- 4. Layer on additional safety risk based on total patient exposures by phase and apply regulatory approval risk

Example of sensitivity and specificity are used to calculate probabilities of success

After some initial team training, team responded well to assessment approach

- Needed to spend about hour total explaining the assessment methodology using examples
- Helpful to have statistician on team to help calibrate team on the sensitivity and specificity of various study designs and endpoints
- Team was not certain about precise values for each option, but felt the values were correct relative to one another
- Sensitivity analysis was use to show team how much their assessments could change without changing the recommended strategy
- Team preferred approach over the traditional approach because
 - Scientist have some intuition about sensitivity and specificity and
 - They do not feel like they are guessing

So let's look at the assessments made by the team*

		1) Fast to M&M	2A) Plaque Regression	2B) Plaque Progression	3) BM PIIA
PIIA	Sensitivity	95%	95%	95%	80%
	Specificity	40%	40%	40%	65%
PIIB	Sensitivity	95%	50%	85%	95%
	Specificity	30%	85%	50%	30%
PIII	Sensitivity	65%	80%	80%	65%
	Specificity	100%	100%	100%	100%

- PIII sensitivity for Options 1 and 3 are low because PIIB does not inform dose so risk is higher in PIII because we might choose the wrong dose
- PIIB for Options 2A and 2B reflect differences in go/no go criteria for imaging results
- PIIA for Option 3 has relatively high specificity and low sensitivity because of use of biomarkers in this phase
- Overall true probability of success assessed at approximately 20%
- Does not include overlay of "standard" safety risk by phase

Resulting calculated probabilities of success*

	Probabilities of Success								
Option	ΡΙ	P IIa	P IIb	P III	Reg.	Overall			
1) "Fast to M&M"	75%	61%	70%	20%	80%	5.2%			
2A) "Plaque Regression" PII	75%	61%	22%	41%	80%	3.4%			
2B) "Reduced Progression" PII	75%	61%	52%	30%	80%	5.7%			
3) "Multiple Biomarker PII"		41%	72%	26%	80%	4.5%			

- "Fast to M&M" has very low probability of PIII success (20%) because little risk was discharged in the PII studies
 - However, overall probability of success is high because there is less of a chance of a false negative in PII
- Setting the "Go" for PIIB high for Plaque Regression lowers PIIB probability, increases PIII probability of success, and lowers overall probability of success significantly
- Setting the "Go" for PIIB much lower Reduced progression raises PIIB probability, decreases PIII probability and lowers probability of false negative
- "Multiple Biomarker PIIA" strategy attempts to buy down risk prior to PIIB
 - Lowers PIIA probability of success and PIIB and PIII increased slightly as a result

GASD

Overall results suggest not pursuing "Plaque Reduction" PIIB strategy and using "Multiple BM" PIIA*

	Probabilities of Success					Costs (\$M)							1)	
Option	<u>-</u>	P IIa	P IIb	P III	Reg.	Overall	ΡΙ	P IIa	P IIb	P III	Reg.	Expected	Launch	eNPV (\$M)
1) "Fast to M&M"	75%	61%	70%	20%	80%	5.2%	15	30	25	600	65	585	1H2019	75
2A) "Plaque Regression" PII	75%	61%	22%	41%	80%	3.4%	15	30	125	600	65	675	1H2022	-
2B) "Reduced Progression" PII	75%	61%	52%	30%	80%	5.7%	15	30	125	600	65	685	1H2022	25
3) "Multiple Biomarker PII"	75%	41%	72%	26%	80%	4.5%	15	37	25	600	65	590	1H2019	70

- Despite significantly lowering PIII risk, both "Plaque Reduction PIIB" strategies have the lowest value largely due to the high cost of PIIB and the launch delay
- "Multiple BM" PIIA has equivalent expected value but has a superior risk profile
- Team recommended "Multiple BM" PIIA strategy
- Team resigned to reality atherosclerosis drug development is "risky"

Conclusions

- When evaluating alternative development plans, it is important to have internally consistent probabilities of success assessments
- Assessing probabilities utilizing sensitivity and specificity by phase can be an effective technique for obtain consistent probabilities

