

ORDER TO UNORDER – THE THIRD AXIS OF DA (AND HOW IT APPLIES TO SUSTAINABLE ENERGY)

Patrick Leach DAAG 2011

The usual DA process

This approach to decision-making assumes a fairly high degree of *order* in the problem at hand

Order versus Unorder

Ordered systems

- The past is an indicator of the future
- Uncertainties are "well behaved"
- Modeling results are repeatable
 - Minor input differences => minor output differences
- Expected values are meaningful
- Unordered systems
 - The future may not resemble the past at all
 - "Strange attractors"
 - Uncertainties are strongly interdependent
 - Feedback loops and tipping points
 - Minor input differences may lead to extremely different outcomes
 - The concept of the EV of a decision alternative may not be meaningful

Decision-making amidst varying degrees of order

Situation		Buzz phrase	Key inputs, tools	Decision process
Stable	Sense Categorize Respond	"The past is key to the future"	Benchmarking, six-sigma	Determine best practices and adopt them; delegate
Sense Complicated Analyze Respond		"Known unknowns"	Expert inputs; stochastic modeling	Think creatively; push boundaries; use analysis to gain insight; weigh competing objectives
Complex	Probe Sense Respond	"Tipping points; butterfly effects"	Parallel efforts by multiple teams	Set boundaries, then experiment; multiple creative approaches; solutions emerge
Chaotic	Act Sense Respond	"What the h*** is going on?"	None. Cope with situation and impose as much order as possible until chaos passes	Autocratic; take charge and give commands

Reference: Snowden and Boone

A third axis to the traditional DA 2x2

A third axis to the traditional DA 2x2

Characteristics of complex systems:

- Large number of interacting elements (or agents)
- The agents and the system constrain each other
 - Contrast with ordered systems (system constrains agents)
- Interactions are non-linear
 - Minor changes can have major consequences
- The past is not the key to the future
 - Deterministic prediction is impossible
- System evolves
 - Elements evolve with one another and with environment
 - Evolution is irreversible

Reference: Snowden and Boone

But human complex systems may be different

- Humans play multiple roles and fluidly switch between them
- We make decisions based on:
 - Past patterns of success or failure and/or emotion
 - NOT on logical, definable rules
- Humans can consciously change systems

Reference: Snowden and Boone

So we have to model human behavior in a way that captures human attributes

=> Game Theory

The Order-to-Unorder spectrum bifurcated

Consider the issue of Sustainable Resources

A modified DA process*

Discovery

- Understand the opportunity
- Understand the system;
 learn the rules
- Understand all players objectives, preferences and decisions

Framing

- Clarify our objectives
- Raise issues
- Determine focus
- Create strategic themes
- Understand influences between uncertainties
- Establish reasonable boundaries for evaluation
- Understand objectives,
 strengths, and influences of all players

^{*}Acknowledgement to James Mitchell

A modified DA process*

Evaluation (1)

Evaluation (2)

• Evaluation (3)

- Where known unknowns dominate:
 - Build stochastic model
 - Gather probabilistic inputs
 - Evaluate strategic themes
 - Gain insight
 - Create hybrid strategies
 - Optimize hybrid

- Where "agent interactions" dominate:
 - Probe the situation; experiment within the bounds established during framing
 - Pilot several different potential solutions?
 - Observe changes and trends in the other players and in the system itself;
 learn what works
 - Plan for flexibility

- To account for other major players and gain insight into likely outcomes:
 - Model the players' interactions through a "sufficient" number of time periods
 - Include appropriate uncertainties
 - Run multiple simulations
 - Discover likely stable solutions

^{*}Acknowledgement to James Mitchell

What this means for Sustainable Resources

- Research and/or analysis alone will not generate an answer
- Bounded experimentation is needed
- Game theory modeling of the behavior of the major players should be used
- Solutions will emerge

The biggest obstacle to action:

"...the values to which people cling most stubbornly under inappropriate conditions are those values that were previously the source of their greatest triumphs over adversity."

Jared Diamond in *Collapse – How Societies Choose* to Fail or Succeed

TRADITION

JUST BECAUSE YOU'VE ALWAYS DONE IT THAT WAY DOESN'T MEAN IT'S NOT INCREDIBLY STUPID.

www.despair.com

So there's an element of Change Management needed, too.

(... but then again, there always is)

References

- Diamond, Jared, 2005. *Collapse: How Societies Choose to Fail or Succeed.* Penguin Books, London.
- French, Simon "Cynefin: repeatability, science, and values," Newsletter for the European Working Group "Multicriteria Decision Aiding," Series 3, No. 17, Spring 2008.
- Kurtz, C.F. and Snowden, D.J. "The new dynamics of strategy: Sense-making in a complex and complicated world," *IBM Systems Journal*, Vol. 42, No. 3, 2003, pp. 462-483.
- Richardson et al, ed., 2006. Emergence, Complexity, and Organisation E:CO
 Annual Volume 6, 2nd ed. ISCE Publishing, Mansfield, MA.
- Snowden, Dave. "Complex Acts of Knowing: Paradox and Descriptive Selfawareness," Journal of Knowledge Management, Vol. 6, No. 2. May 2002, pp. 100-111.
- Snowden, David J. and Boone, Mary E. "A Leader's Framework for Decision Making", Harvard Business Review, November 2007, Vol. 85, No. 11, pp. 69-76.
- Snowden, David and Stanbridge, Peter. "The landscape of management: Creating the context for understanding social complexity," *Emergence, Complexity, and Organisation E:CO* Vol. 6 Nos. 1-2, 2004, pp. 140-148.

Questions?

