

Oil & Gas Appraisal and VOI

How the Game Changes Things

Presented to:

DAAG

Presented by: Paul Papayoanou, Ph.D.

April 20, 2011

6700 Woodlands Pkwy, Suite 230-267 • The Woodlands, TX 77382
Phone: 281.292.2344 • Fax: 281.292.1190
info@stratgaming.com • www.stratgaming.com

Agenda

- DA and VOI
- VOI with a game-theoretic lens
- Lessons to take with you

Received Wisdom

- Decision analysis teaches us that the value of information (VOI) is either positive or has no value
- While the costs to obtain information may exceed the value to be gained, the value of the information itself is always nonnegative
- The only debate is around how best to calculate the costs and benefits of seeking information

The received wisdom is wrong and can be dangerously misleading

Case example

Situation

- Upstream oil & gas case involving Nash Oil Company
- Nash is considering whether to drill a second exploratory well in a block it owns
- The Nash team does a traditional VOI analysis to figure out whether it is worthwhile

Assessments

- Base value for development without second exploratory well = \$300 MM
- Well cost is \$50 MM
- If positive results, new development plan would result in \$500 MM of additional value
- The Nash team sees the well as having a 25% chance of success

The decision tree

Expected value of drilling is .25*750 + .75*250 = 375

This is greater than the 300 from not drilling, so standard VOI analysis tells Nash to drill

But, there is a "game" going on...

- Collaboration potential:
 - Kahuna Oil & Gas owns an adjacent block
 - Unitizing (combining) the two fields is possible, and talks have begun
 - Negotiations would involve coordination issues
- Competitive, first-mover advantage issue:
 - Kahuna has recently been talking about moving to develop its block soon, and independently of Nash
 - Kahuna would be able to drain some oil from the Nash side of the reservoir, leading to a transfer of about \$150 MM in value from Nash to Kahuna
 - Nash could be similarly motivated; could drain \$50 MM in value from Kahuna's side of the reservoir

Game theory is the most appropriate tool when the issues lie within the 3C space

Game theory is in the same family as DA, but differs in subtle yet important ways

Game vs. Decision Trees

- Game trees model the actions of other players as decisions, not uncertainties
- Each player's decisions are a function of others' decisions and their own payoffs (value)
- Chance events can be incorporated as in decision trees

Economic Modeling

- Similar to DA, but done from each player's perspective
- Decision switches in the model are for all key players

The game tree for this case

Game theory shows:

- Kahuna will always have an incentive to develop now
- The expected value of drilling for Nash is 225 (.25*600 + .75*100), clearly **less** than the 300 from not drilling
- Contrary to the DA, Nash should <u>not</u> drill the second exploratory well
- The first-mover advantage means the information has negative value

There may also be signaling issues in games

- Information may become known to other players, who can then use that information to their advantage
- In this case, Kahuna would surely discover something about the results of a second exploratory well
 - If the well is a success, Nash would surely trumpet the results
 - If it fails, Nash would say little, if anything; this silence would be a clear signal to Kahuna

One also needs to consider whether information can bolster a negotiating position

- For example, if Nash and Kahuna are negotiating unitization, will the information improve the chance of achieving a win-win?
- With a positive test result, Nash may feel it is fair to demand a predominant share of the unitization equity split
 - May be more "fair," but fairness is beside the point
 - The prospect of such a demand may give Kahuna more reason to develop its own block separately and quickly
- A second exploratory well may not bolster Nash's negotiating position and, in fact, may ensure that Nash is a disadvantaged second-mover (illustrated on next slide)

Why information-seeking does not add value to these negotiations Nash Kahuna Success 600 350 Develop now .25 <u>Failure</u> 100 350 .75 Kahuna Accept 285 665 Offer to unitize **Drill Second** 70-30 Reject 200 750 Exploratory. Well Nash Accept 475 475 **Success** Kahuna Offer to unitize .25 50-50 Reject 750 200 Develop later Not Wait 200 Nash Accept 225 225 Offer to unitize Nash 50-50 Reject Failure 200 250 .75 Develop later Not 200 Kahuna Accept 250 250 Offer to unitize Reject/(both) develop now Nash 50-50 Not 200 300 Develop now i **Develop Now** 200

Whether drill or not, there is no unitization win-win. Kahuna will still have an incentive to develop now. In turn, so should Nash.

Summary and points to take with you

- Using a DA framework to calculate VOI and assess its strategic implications can be dangerously misleading
 - Game situations can make VOI negative due to issues around timing and signaling
 - A DA approach to VOI can also blind us to negotiation realities
- In framing, structuring and evaluating a VOI question, as well as many strategy issues, analysts thus need to pay heed to interactions
 - If 3C issues exist, a game-theoretic analysis is usually more appropriate than DA
 - Game theory should be seen as an extension of DA