Exploratory Decision Analysis of the Future of the Automobile in the USA

Max Henrion with Xirong Jiang, Surya Swamy Lumina.

Costa Samaras, RAND, Cary Bloyd, PNL

DAAG, Houston, Texas, April 20-21, 2011

The Automobile in the USA

• Transportation consumes 28% of energy, 30% of GHG emissions. Most oil is imported.

- Biofuels, electric vehicles, hydrogen fuel cells, CNG, or just improve ICE efficiency?
- Obama's plan to reduce oil imports by one third over the next decade.
- Fleet turnover ~12 years

Overview

- Open-source policy modeling
 - What is it and why?
- Exploratory decision analysis
 - ATEAM: Analytica Transportation Energy Assessment Model

Elements of a decision analysis

Public policy decisions	Consumer decisions	Uncertainties	Objectives
Renewable Fuel Standard	Vehicle miles travelled	Oil price	Reduce GHG emissions
Low Carbon Fuel Standard	Choice of fuel & technology	Biofuels cost	Reduce oil imports
CAFÉ: Fleet efficiency	Vehicle size	Battery cost	Save costs of transportation
Tax credits & incentives by		ICE efficiency	
technology	Industry	Light	
Biofuel credits and tariffs	decisions	weighting	
Carbon tax	Products and pricing	GDP growth	
RD&D	RD&D	Consumer preferences	

A-TEAM: Analytica Transportation Energy Analysis Model

 To evaluate the effects of new fuels and technologies, including biofuels, CNG,, HEVs, PHEVs, HFCVs, on the US light-duty vehicle fleet costs, GHG emissions, and oil & gas imports.

National, regional, state: to 2050

- Designed to be transparent and agile for fast exploration of scenarios, sensitivity and uncertainty analysis
- An open-source model built in Analytica by Lumina for PNNL, DoE Vehicle Technology Program, and others....

ATEAM compares, combines, and extends existing studies and models

- EIA's Annual Energy Outlook: Uses AEO projections as baselines for comparison
- Federal Policies: E.g.
 - **RFS**: Renewable Fuel Standard
 - CAFE: Corporate Average Fuel Economy: Apr 1, 2010
- NAS/NRC: Compare scenarios on fuel economy, market penetration from recent studies by National Academy of Science
- DoE/OBP: Recent projections of biofuels production through 2015 and technology performance to 2050
- DOE/VTP: Recent projections of battery and other vehicle technology costs

- VISION: Spreadsheet model of US vehicle fleet (ANL)
- GREET: GHG emissions and fuel economy estimates from spreadsheet model (ANL)
- Polysis: ORNL and U Tn model of biomass production by county
- EERE Risk Working Group and SEDS: Probability distributions from expert elicitations for technology performance used in SEDS (Stochastic Energy Deployment System) (NREL)
- Simple physics energy model (SPEM) of energy use by vehicles, regression fit to EPA vehicle performance data (Sovran & Blaser, Lumina)

Renewable Fuel Standard

Renewable Fuel Standard (RFS2)

- Created under Energy Policy Act of 2005
- Amended under Energy Independence and Security Act (EISA) of 2007

How can we consume that amount of ethanol?

Sources: Moriarty (NREL), 2010 AEO, 2010

Copyright © 2011 Lumina Decision Systems, Inc

Background

Percent reduction in GHG emissions per mile from ethanol blends and sources

- E85 achieves greater emission reductions than E10
- Cellulosic ethanol achieves greater emission reductions than does corn ethanol

Source: Wang (ANL), 2005

E15-E85 infrastructure

Fuel efficiency Scenarios

- Fuel economy for CAFE, AEO and by vehicle type based on NAS scenarios
- Assessment of weight impacts on fuel economy

Lifecycle cost types per mile (\$/mile)

 SI - spark Ignition; HEV - hybrid electric vehicle; CNG - compressed natural gas; BEV - battery electrical vehicle; PHEV - plug-in hybrid vehicle; FCV - Hydrogen fuel cell vehicle

Vehicle Select and configure vehicles

👽 Edit Table - Custom vehicle configurations									
Edit Table of Custom vehicle configurations									
Vehicle config IDs 🔻									
	Vehicle config fields Vehicle config fields								
	Vehicle type	Engine type	Fuel type	AER (mile)	Weight factor	intro year	Select?		
1	Car 🔻	sı 🔻	Gasoline 🔻	0 🔻	1	1975 🔻			
2	Car 🔻	sı 🔻	Diesel 🔻	0 🔻	1	1975 🔻			
3	Car 🔻	si 💌	Flexfuel 🔻	0 🔻	1	1999 🔻			
4	Car 🔻	HEV 🔻	Gasoline 🔻	0 🔻	1	1998 🔻			
5	Car 🔻	HEV 🔻	Diesel 🔻	0 🔻	1	2025 🔻			
6	Car 🔻	HEV 🔻	Flexfuel 🔻	0 🔻	1	2030 🔻			
7	Car 🔻	sı 🔻	CNG 🔻	0 🔻	1	2010 🔻	I 🔽 _		
8	Car 🔻	BEV 🔻	None 🔻	120 🔻	1	2015 🔻			
9	Car 🔻	PHEV 🔻	Gasoline 🔻	10 🔻	0.8	2010 🔻			
10	Car 🔻	PHEV 🔻	Gasoline 🔻	40 🔻	0.8	2011 🔻			
11	Car 🔻	PHEV 🔻	Flexfuel 🔻	40 🔻	1 1	2011 🔻			
12	Car 🔻	FCV 🔻	Hydrogen 🔻	0 🔻	1	2015 🔻			
•									

Vehicle Fleet Scenarios

- You can define vehicle fleet scenarios and sets of vehicle technology and fuel combinations to compete in the market, such as:
 - AEO Ref: US DoE Annual Energy Outlook 2010 Reference Scenario: All vehicle techologies including ICEV, Flexfuel, HEV, BEV, PHEV and HFCV
 - ATEAM Endogenous: The same set of technologies, projecting market share by year based on levelized cost per mile, adjusted for preference and fuel availability.
 - NAS Ref: National Academy of Sciences reference: The types of vehicles considered in this case include conventional ICEV, and conventional HEV. AEO fuel economy to 2035 with linear extrapolation post 2035.
 - NAS Hydrogen: NAS Ref plus optimistic assumptions on hydrogen fuel cell vehicles.
 - NAS PHEV: NAS Ref plus plug-in hybrid vehicles.

Scenarios for Market Share of Sales by technology

Reduce Oil Range sensitivity analysis: Effects on reduction in oil imports

Economic and Environment Analysis

Battery
costsLi-ion batteries:Estimates of unit cost (\$/kWh)

Data from Annual Energy Outlook: Retrospective Review 2009.

Distributions for percent error in AEO Forecasts 1980 to 2008

Data from Annual Energy Outlook: Retrospective Review 2009.

Fitting the empirical error distribution for AEO energy price forecasts

	Quantity	Price
Geometric mean	1.001	1.118
Geometric st dev	1.087	1.638

Error by forecast time range: (geometric standard deviation)

AEO scenarios vs. percentiles of probabilistic forecasts

Uncertainty assessment from retrospective error analysis of forecasts: Some observations

- Some types of quantity (e.g. prices) are less predictable than others (e.g. energy flows).
- You need a long history for useful calibration
- Forecast error distributions have long tails not Gaussian.
- Assumes that the future is as (un)predictable as the past.
- Complementary to expert elicitation

Open-source policy modeling: A modest proposal

- All computer models used by governments to evaluate or justify public policy should be *open source*.
 - That is, the source program code should be available for anyone to download, review, run, and modify.
- Does this mean we must use only open-source tools?
 - No. We can still use proprietary software, like Microsoft Excel, or Analytica as long as the model code is public and the tool is easily available.

Max Henrion, "Open-Source Policy Modeling", I/S, J. of Law and Policy for the Information Society, 2007

Why open-source policy models?

- Anyone policy analysts, industry, NGOs, students, other agencies, interested public should be able to review and critique assumptions, and explore sensitivity to changes.
- Inspired by open-source software
 - Firefox 43% of web browsers, Linux runs 30% of servers, Apache 70% of web servers, My SQL 44% of database systems,.

And by open-source content, notably Wikipedia

- Accuracy close to Encyclopedia Britannica. Coverage many times larger.
- Improve quality? Detect and fix errors
 - "Given enough eyeballs, all bugs are shallow." Linus's Law, (*The Cathedral and the Bazaar*, Eric Raymond, 1996).
- Imagine a growing community of policy modelers comparing, reviewing, improving, and recombining each others' models.

Summary

ATEAM is designed

- as a decision-analytic platform
- Available as open-source
- to encourage scrutiny and debate
- With sensitivity analysis to identify what matters and why to focus the discussion
- to facilitate exploration of multiple scenarios and explicit uncertainty

Bringing clarity to difficult decisions

Copyright © 2011 Lumina Decision Systems