Factored stochastic tree modeling for medical decision making

Gordon Hazen IEMS Department Northwestern University

Outline of talk

- What is a stochastic tree?
 - -Basic concepts
 - -Stochastic tree rollback
- Factoring stochastic trees
- Approximating human mortality
- Example: Testing for ovarian cancer
- The StoTree modeling environment
- Cost-effectiveness for ovarian cancer testing

Outline of talk

• What is a stochastic tree?

-Basic concepts

- -Stochastic tree rollback
- Factoring stochastic trees
- Approximating human mortality
- Example: Testing for ovarian cancer
- The StoTree modeling environment
- Cost-effectiveness for ovarian cancer testing

- A stochastic tree is
 - -A decision tree with *stochastic nodes* added
 - -A continuous-time MC with chance and decision nodes added
 - -A multi-state DEALE model
 - A continuous-time version of a Markov cycle tree

• Beck and Sonnenberg (1993):

-42-year old man received kidney transplant 18 months ago. Normal kidney function maintained under immunosuppressive therapy.

-Two synchronous melanomas appeared and required wide resection.

- Should immunosuppressive therapy be continued?
 - -Continuation increases chance of another possibly lethal melanoma
 - -Cessation ensures kidney rejection and dialysis

Stochastic tree representation

...What is a stochastic tree? Using phantom nodes to avoid duplication

Conventional method: Markov Cycle Tree

Cycles in a stochastic tree

Matchar & Pauker (1986): Transient ischemic attacks in a man with coronary artery disease

Transforming stochastic trees

• Superposition / Decomposition

Transforming stochastic trees

• Superposition / Decomposition

- ... Transforming stochastic trees
- Eliminating self-transitions

... Transforming stochastic trees

... Transforming stochastic trees

Outline of talk

- What is a stochastic tree?
 - -Basic concepts
 - -Stochastic tree rollback
- Factoring stochastic trees
- Approximating human mortality
- Example: Testing for ovarian cancer
- The StoTree modeling environment
- Cost-effectiveness for ovarian cancer testing

Stochastic tree rollback

L(x) = Mean QALY beginning at x

$$= v(x) \cdot \frac{1}{\lambda} + \sum_{y} p_{y} L(y) = \frac{v(x) + \sum_{y} \lambda_{y} L(y)}{\sum_{y} \lambda_{y}}$$

Rollback without discounting

$$L(x) = \frac{v(x) + \sum_{y} \lambda_{y} L(y)}{\sum_{y} \lambda_{y}}$$

 $\boldsymbol{\cdot}$ Rollback with discount rate α

$$L(x) = \frac{v(x) + \sum_{y} \lambda_{y} L(y)}{\alpha + \sum_{y} \lambda_{y}}$$

Stochastic tree rollback

Outline of talk

- What is a stochastic tree?
 - -Basic concepts
 - -Stochastic tree rollback
- Factoring stochastic trees
- Approximating human mortality
- Example: Testing for ovarian cancer
- The StoTree modeling environment
- Cost-effectiveness for ovarian cancer testing

Factoring stochastic trees

Death is a forgone conclusion, so separate it out ...

Factoring stochastic trees

Factoring stochastic trees

Further factoring...

- There are really four *simultaneous parallel processes* in this model:
 - -Mortality
 - -Treatment choice
 - -Cancer progression
 - -Transplant rejection
- Why not factor these out?

...Further factoring

...Further factoring (with dependencies)

...Factoring stochastic trees

Tsevat et al. (1986): Warfarin for dilated cardiomyopathy

Outline of talk

- What is a stochastic tree?
 - -Basic concepts
 - -Stochastic tree rollback
- Factoring stochastic trees
- Approximating human mortality
- Example: Testing for ovarian cancer
- The StoTree modeling environment
- Cost-effectiveness for ovarian cancer testing

Approximating human survival

Coxian approximation to human mortality

$\frac{1}{\lambda \operatorname{Stg} 1}$	λ Stg 2	λ Stg 3	λ Stg 4
	μ Stg 2	μ Stg 3	μ Stg 4
5 λ Stg 5 μ Stg 5	λ Stg 6	λ Stg 7	μ Stg 8

60-year-old white female

	λ	μ
Stg 1	0.29	0.01
Stg 2	0.28	0.02
Stg 3	0.3	0
Stg 4	0.3	0
Stg 5	0.3	0
Stg 6	0.3	0
Stg 7	0.18	0.118
Stg 8		0.298

Coxian approximation to human mortality

Factoring out mortality

... Factoring out mortality

... Factoring out mortality

Outline of talk

- What is a stochastic tree?
 - -Basic concepts
 - -Stochastic tree rollback
- Factoring stochastic trees
- Approximating human mortality
- Example: Testing for ovarian cancer
- The StoTree modeling environment
- Cost-effectiveness for ovarian cancer testing

Testing for Ovarian Cancer

Ovarian Cancer Testing : Influence structure

Ovarian Cancer Testing: Influence Structure

Ovarian Cancer Testing: Influence Structure

Structure of Screening Factor

Structure of Ovarian Cancer Stage Factor

Structure of Treatment Factor

Structure of Other Ovarian Pathologies Factor

Outline of talk

- What is a stochastic tree?
 - -Basic concepts
 - -Stochastic tree rollback
- Factoring stochastic trees
- Approximating human mortality
- Example: Testing for ovarian cancer
- The StoTree modeling environment
- Cost-effectiveness for ovarian cancer testing

The StoTree modeling environment

	Α	В	С	D	E
1					
2			S	toTree 1	X
3					
4					
5				$\rightarrow \leftarrow \uparrow$	2
6				N 60 2	<
7				× 7 1 1 1 5	
8				📎 🔐 Tr	*
9					>
10					
11					
12					
13					
14					

The StoTree modeling environment

	Α	В	С	D	E	F	
- 1							
2	Activ	e)	C	oTroa 1			
3	<u> </u>						
4				坐 🖆 🛄			
5					5.		
6				N 10. 2	Ž		
7				17 60 2	-2-		
8				<u> m Tr</u>			
9	Add	Node				×	
10							
11	•	Create new no	de with name			OK	
12		dy Node				Cancel	
13						Caricer	
14		nsert existing r	node				
15							
16	5						
17					10 M		

... StoTree modeling environment

... StoTree modeling environment

...StoTree modeling environment

...StoTree modeling environment

Outline of talk

- What is a stochastic tree?
 - -Basic concepts
 - -Stochastic tree rollback
- Factoring stochastic trees
- Approximating human mortality
- Example: Testing for ovarian cancer
- The StoTree modeling environment
- Cost-effectiveness for ovarian cancer testing

Cost-Effectiveness for Ovarian Cancer Testing

- Hypothetical test for ovarian cancer
- High-risk women (e.g., close relative with breast or ovarian cancer): 8% lifetime risk
- Sensitivity 75% for Stages 1,2; 85% for stages 3,4
- Specificity 97%

Cost-Effectiveness Results for Ovarian Cancer Testing

Screen					
frequency	0	4 yr.	2 yr.	1 yr.	6 mo.
Cost (\$)	\$4,440	\$5,883	\$7,316	\$10,147	\$15,662
Effectiveness					
(years)	18.72	18.73	18.74	18.76	18.78
ΔC		\$1,443	\$1,433	\$2,831	\$5,515
ΔE (days)		4.44	3.55	5.23	6.13
∆E (days) vs no screening		4.44	7.99	13.22	19.35
∆C/∆E (\$/life year)		\$118,690	\$147,443	\$197,674	\$328,411
$\Delta C/\Delta E$ (\$/life year screening) vs no	\$118,690	\$131,462	\$157,660	\$211,773

Current and Past Projects

- Total hip replacement (with Rowland Chang, James Pellissier)
- DCIS Ductal carcinoma in situ (with Monica Morrow)
- Ovarian cancer screening (with Debbie Dobrez, Elizabeth Calhoun)

Questions?

