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What 1s a stochastic tree?
e A stochastic tree 1s

— A decision tree with stochastic nodes

added

— A continuous-time MC with chance
and decision nodes added

— A multi-state DEALE model

— A continuous-time version of a
Markov cycle tree



...What 1s a stochastic tree?

Stochastic Trees

Continuous-time MCs

Decision Trees

Discrete-time MCs / Markov cycle trees




... What 1s a stochastic tree?

* Beck and Sonnenberg (1993):

—42-year old man received kidney
transplant 18 months ago. Normal
kidney function maintained under
Iimmunosuppressive therapy .

—Two synchronous melanomas
appeared and required wide
resection.



... What 1s a stochastic tree?

* Should immunosuppressive therapy be
continued?

—Continuation increases chance of
another possibly lethal melanoma

—Cessation ensures kidney rejection
and dialysis



...What 1s a stochastic tree?
Stochastic tree representation
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...What 1s a stochastic tree?
Using phantom nodes to avoid duplication
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Conventional method: Markov Cycle Tree
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Cycles 1n a stochastic tree

Matchar & Pauker (1986): Transient ischemic attacks in a

man with coronary artery disease
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Transforming stochastic trees

* Superposition / Decomposition
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Transforming stochastic trees

* Superposition / Decomposition
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... Transforming stochastic trees

* Eliminating self-transitions
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... Transforming stochastic trees
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... Transforming stochastic trees
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Stochastic tree rollback

L(x) = Mean QALY beginning at x

1 v(x)+ Y A L(y)
— V(X)'KJFZypyL(Y) = Zyky
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- Rollback without discounting

v(X)+ A L(Y)
L(x)= Zy

2%

. Rollback with discount rate o

vx)+ ), A L(y)
o+ Zyky

L(x)=
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Stochastic tree rollback
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Factoring stochastic trees
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Factoring stochastic trees
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Factoring stochastic trees
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Further factoring...

» There are really four simultaneous
parallel processes 1n this model:

—Mortality
—Treatment choice
—Cancer progression

—Transplant rejection

* Why not factor these out?
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...Further factoring

Treatment
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.Further factoring (with dependencies )
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...Factoring stochastic trees
Tsevat et al. (1986): Warfarin for dilated cardiomyopathy
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Coxian approximation to human mortality

60-year-old white female

A o
Stg1 0.29 0.01
Stg2 0.28 0.02
Stg3 0.3 0
Stg4 0.3 0
Stg5 0.3 0
Stg6 0.3 0
Stg7 0.18 0.118
Stg 8 0.298
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Coxian approximation to human mortality

—— White Female
Age 60

— Coxian

0 10 20 30 40 50 60
t (Additional Years)
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Factoring out mortality
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...Factoring out mortality
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...Factoring out mortality
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Testing for Ovarian Cancer
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Ovarian Cancer Testing : Influence structure
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Ovarian Cancer Testing: Influence Structure
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Ovarian Cancer Testing: Influence Structure
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Structure of Screening Factor
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Structure of Ovarian Cancer Stage Factor
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Structure of Treatment Factor
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Structure of Other Ovarian Pathologies Factor

#10,146
18.7585

0 Absent

simple Mass

pii=Nai=
18.5007

(2 Other F'athnlngg,f)

9 535
18,7847

\—\/\—{‘ 0 Abs=ent i

1 Temporary ar I:uenign)
i

Detect or resolve

Risk Category
(Trigger Background
artality
R
Ovarian Cancer Stage
R

Progression Rates

COther Cvarian
Pathologies
R

0 Absent }

44



Outline of talk

* What 1s a stochastic tree?
—Basic concepts
—Stochastic tree rollback
» Factoring stochastic trees
* Approximating human mortality
« Example: Testing for ovarian cancer
* The StoTree modeling environment

e Cost-effectiveness for ovarian cancer
testing

45



The StoTree modeling environment
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The StoTree modeling environment
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...StoTree modeling environment
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...StoTree modeling environment
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...StoTree modeling environment
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...StoTree modeling environment
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Cost-Effectiveness for Ovarian Cancer
Testing
Hypothetical test for ovarian cancer

High-risk women (e.g., close relative with breast
or ovarian cancer): 8% lifetime risk

Sensitivity 75% for Stages 1,2; 85% for stages 3,4
Specificity 97%
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Cost-Effectiveness Results for Ovarian
Cancer Testing

Screen

frequency 0 4 yr. 2 yr. 1 yr. 6 mo.
Cost ($) $4,440 $5,883 $7,316 $10,147  $15,662
Effectiveness

(years) 18.72 18.73 18.74 18.76 18.78
AC $1,443 $1,433 $2,831 $5,515
AE (days) 4.44 3.55 5.23 6.13
AE (days) vs no

screening 4.44 7.99 13.22 19.35
AC/AE ($/life

year) $118,690 $147,443 $197,674 $328,411
AC/AE ($/life year) vs no

screening $118,690 $131,462 $157,660 $211,773
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Current and Past Projects

» Total hip replacement (with Rowland
Chang, James Pellissier)

* DCIS - Ductal carcinoma 1n situ (with
Monica Morrow)

* Ovarian cancer screening (with Debbie
Dobrez, Elizabeth Calhoun )
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Questions?
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