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What is a stochastic tree?
• A stochastic tree is

– A decision tree with stochastic nodes
added

–A continuous-time MC with chance 
and decision nodes added

–A multi-state DEALE model
– A continuous-time version of a 

Markov cycle tree
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…What is a stochastic tree?

Stochastic Trees

Continuous-time MCs
Decision Trees

DEALE

Discrete-time MCs / Markov cycle trees
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… What is a stochastic tree?

• Beck and Sonnenberg (1993):
–42-year old man received kidney 

transplant 18 months ago.  Normal 
kidney function maintained under 
immunosuppressive therapy .

– Two synchronous melanomas 
appeared and required wide 
resection.
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… What is a stochastic tree?

• Should immunosuppressive therapy be 
continued?
– Continuation increases chance of 

another possibly lethal melanoma
–Cessation ensures kidney rejection 

and dialysis 
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…What is a stochastic tree?
Stochastic tree representation
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…What is a stochastic tree?
Using phantom nodes to avoid duplication
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Conventional method: Markov Cycle Tree
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Cycles in a stochastic tree
Matchar & Pauker (1986): Transient ischemic attacks in a 
man with coronary artery disease
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Transforming stochastic trees

• Superposition / Decomposition
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Transforming stochastic trees

• Superposition / Decomposition
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…Transforming stochastic trees

• Eliminating self-transitions
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…Transforming stochastic trees
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…Transforming stochastic trees
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Stochastic tree rollback
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• Rollback without discounting
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Stochastic tree rollback
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Factoring stochastic trees
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Factoring stochastic trees
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Factoring stochastic trees
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Further factoring...

• There are really four simultaneous
parallel processes in this model:
– Mortality
– Treatment choice
–Cancer progression
– Transplant rejection

• Why not factor these out?
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…Further factoring
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…Further factoring (with dependencies ) 
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…Factoring stochastic trees
Tsevat et al. (1986): Warfarin for dilated cardiomyopathy
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Approximating human survival
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Coxian approximation to human mortality

60-year-old white female
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Coxian approximation to human mortality
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Factoring out mortality
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…Factoring out mortality
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…Factoring out mortality
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Testing for Ovarian Cancer
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Ovarian Cancer Testing : Influence structure 
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Ovarian Cancer Testing: Influence Structure
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Ovarian Cancer Testing: Influence Structure
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Structure of Screening Factor
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Structure of Ovarian Cancer Stage Factor
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Structure of Treatment Factor
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Structure of Other Ovarian Pathologies Factor
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The StoTree modeling environment
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The StoTree modeling environment
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…StoTree modeling environment
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…StoTree modeling environment
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...StoTree modeling environment
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...StoTree modeling environment
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Cost-Effectiveness for Ovarian Cancer 
Testing

• Hypothetical test for ovarian cancer
• High-risk women (e.g., close relative with breast 

or ovarian cancer): 8% lifetime risk
• Sensitivity 75% for Stages 1,2; 85% for stages 3,4
• Specificity 97%
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Cost-Effectiveness Results for Ovarian 
Cancer Testing

$211,773$157,660$131,462$118,690
∆C/∆E ($/life year) vs no 
screening

$328,411$197,674$147,443$118,690
∆C/∆E ($/life 
year)

19.3513.227.994.44
∆E  (days) vs no 
screening

6.135.233.554.44∆E (days)
$5,515$2,831$1,433$1,443∆C

18.7818.7618.7418.7318.72
Effectiveness 
(years)

$15,662$10,147$7,316$5,883$4,440Cost ($)

6 mo.1 yr.2 yr.4 yr.0
Screen 
frequency
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Current and Past Projects

• Total hip replacement (with Rowland 
Chang, James Pellissier)

• DCIS - Ductal carcinoma in situ (with 
Monica Morrow)

• Ovarian cancer screening (with Debbie 
Dobrez, Elizabeth Calhoun )
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Questions?
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