

Evaluation and Decision-making

Jonathan Barzilai barzilai@scientificmetrics.com barzilai@dal.ca

...the universities. The inertia of the human mind and its resistance to innovation are most clearly demonstrated not, as one might expect, by the ignorant mass but by professionals with a vested interest in tradition and in the monopoly of learning. Innovation is a twofold threat to academic mediocrity: it endangers their oracular authority, and it evokes the deeper fear that their whole, laboriously constructed intellectual edifice might collapse.

Howard's "Religious Spectrum of Decision Analysis"

- Howard: "In Praise of the Old Time Religion"
- To Howard's "Heathens, Heretics, and Cults" add Utility Fanatics.
- Science is not a religion.

Von Neumann and Morgenstern's Utility Theory

- The right proof of the wrong claim. The operations of addition and multiplication are not applicable and there are other major problems.
- Inadequate mathematical basis to utility theory, the theory of games, economics, decision theory, mathematical psychology and other fields.

Does It Matter?

- You don't need to study thermodynamics to drive a car.
- Provided someone else did.
- Practitioners assume that a sound theory underpins decision analysis, but this is not the case.

Serious Practical Implications

- Public procurement in Canada is a \$14B p.a. business.
- You lost the bid with a score of 69. 654321...
- But the error was 10% and the numbers were meaningless; "on a scale of 1-10"
- The AHP, weights, ratios, units (Roberts), hierarchies, "multiplicative length," +++

It Can Be Done - Easily

- Only two operations (repeated). Intuitive and simple.
- Time ratios are undefined.
- Ratios of differences follows.

"It Takes Half an Hour..."

$$(t_a - t_d) = \frac{1}{2}(t_1 - t_0)$$

$$\frac{(t_a - t_d)}{(t_1 - t_0)} = \frac{1}{2}$$

Group Decision Making

- "Arrow's Impossibility Theorem" another case of mis-interpretation.
- The ordinal case is irrelevant.
- A constructive theory cannot be based on a negative result.
- Group Decision Making can be done theory and practice easily.

Keeping the Math Under the Hood

- Tetra is a software package for measurement of preference. It is based on Preference Function Modeling (PFM).
- There are only two operations which are repeated: weighting the criteria and rating the alternatives.
- It is intuitive and easy to learn and use.

Group Decision Making

- Tetra is also a powerful tool for group decision making.
- It is flexible and can be tailored to specific applications.
- Artificially forced consensus is not imposed on Decision Makers. Tetra supports non-collaborative as well as collaborative decision making.

Local or Remote

- Tetra has full database and communications capabilities.
- Decision making may be interactive or not.
- Inputs may be provided through local or remote networking.

A Multi-Use Tool

- Procurement Evaluation;
- Budget Allocation, Project Priorities;
- Strategic Planning, Performance Measurement;
- Engineering Design, Urban Planning;
- Personnel Merit Boards , Marketing, Hiring.

What is PFM?

- Preference Function Modelling (PFM) is a methodology for decision making, evaluation, and measurement of preference.
- PFM is the result of research since the 1980's into Decision Theory and the Theory of Measurement.

Why PFM?

- The mathematics of evaluation is difficult.
- PFM is based on sound mathematical foundations. It avoids the pitfalls common to classical evaluation methodologies.

A "Weighted-Sum" Example

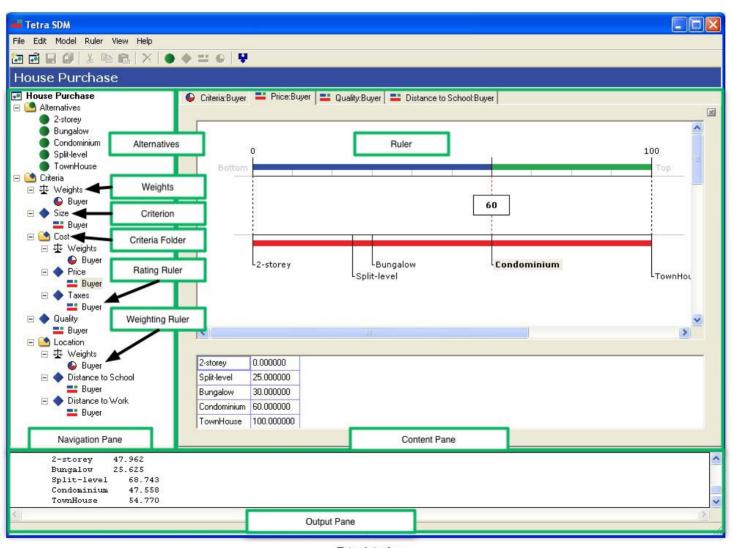
- A Decision Maker is evaluating two job offers.
- The criteria are professional interest and salary.

	Professional Interest (.6)	Salary (.4) (\$K/Yr)	Weighted Sum
Position 1	15	50	=.6*15+ .4*50=9+ 20=29
Position 2	20	45	=12+18= 30

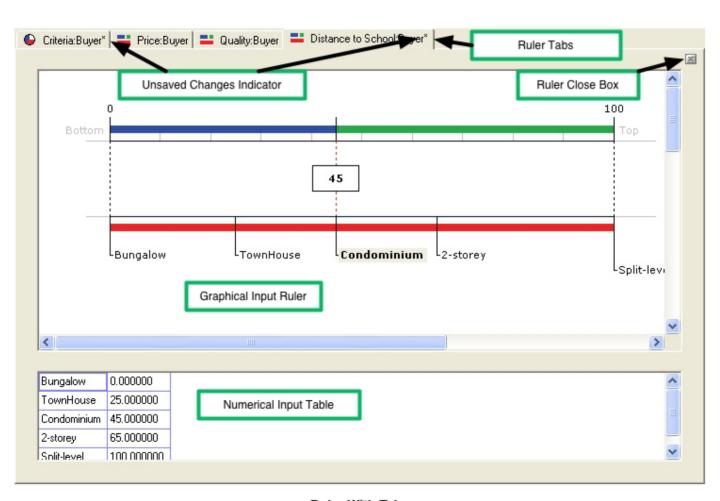
Prefer #2

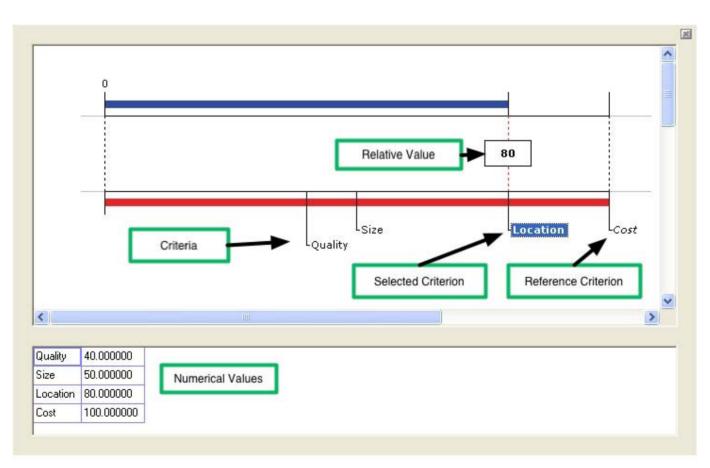
	Professional Interest (.6)	Salary (.4) (\$/Yr)	Weighted Sum
Position 1	15	\$50,000	=.6*15+ .4*50000 =9+20000 = 20029
Position 2	20	\$45,000	=12+ 18000= 18012

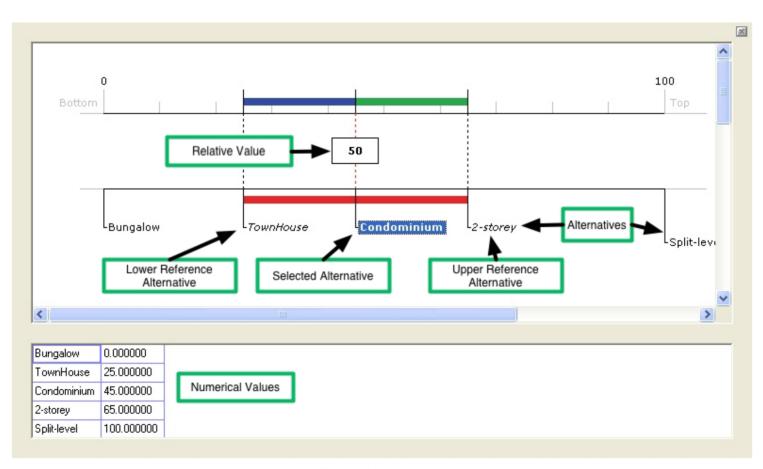
Prefer #1


Advantages of Tetra

- The math is "under the hood," common pitfalls are avoided and bias is minimized.
- The difficulties include issues of "verbal scales," measurement units, interpretation of "relative importance" vs. weighted sums, group decision making, etc., etc.


Tetra Screen Shots


Tetra Interface


Ruler With Tabs

Weighting Ruler

Rating Ruler