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My research and practice are focused on decision making
under uncertainty.
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Efficient modeling of probabilistic dependence. | CH ANGE '
Value of information. g s st
Strictly proper scoring rules.

Auditing and scoring of expert forecasts.
Corporate risk preference.

Application Areas

* Optimal development of unconventional gas reservoirs.
Value of seismic information.

Optimal sequencing of exploration wells.
Risks of carbon capture and storage.
Energy and climate policy.

Baseball strategy.
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Bickel, J. Eric and Lee Lane, 2010. “Climate Engineering as a Response to Climate Change.” In
Smart Solutions to Climate Change. Edited by Bjgrn Lomborg. Cambridge University Press.
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We often need to approximate continuous uncertainties
(e.g., to include them in a decision tree).
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One frequently used method is known as “Bracket Mean”
or “Equal Areas.”

Developed by Jim Matheson and colleagues at Stanford Research Institute
(later SDG) in the late 1960s.
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Notice that the 25-50-25 approximation is very close, in this case, to the
P90-P50-P10 points. This is the 25-50-25 shortcut popularized by SDG.
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To ease practice, several three-point shortcuts have been
developed; | focus on only three of these.

Shortcuts (in order of development)
Extended Person-Tukey (EPT)
McNamee-Celona Shortcut (MCS)
Extended Swanson-Megill (ESM)

EPT MCS ESM
P95 P90 P90
0.185 0.25 0.30
P50 P50 P50
0.630 0.50 0.40
0.185 0.25 0.30

P5 P10 P10
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A more precise method is known as “Gaussian Quadrature.”

e Methods that can be used to match the moments of distributions were
developed by Gauss in the early 1800s.

* Miller and Rice (1983) introduced them to decision analysts almost 30 years
ago.

* Here are P10-P50-P90 approximations that match the first three moments of
the listed distributions:

Uniform Normal Exponential Triangular
2(x—a)
b-a)c—a)
f(x):<M c<x<b
(b—a)b—-c)
L i 0 otherwise
fe)=1 flx)=(2n)z¢° flx)y=e" L
x x e [0,1] x € (—o, ) x>0 xela=0,b=1c=0.5]
0.260 0.304 0.465 0.273
0.480 0.392 0.175 0.454
0.260 0.304 0.360 0.273

* Note: Triangular discretization is a function of ¢, but this relationship is weak enough to ignore.
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One interesting question is how accurate the differing
methods are Iin approximating the underlying distribution.

What do we mean by “accurate”?

* Preserving the shape of the distribution? What do we mean by “shape”?
* Preserving particular fractiles of the distribution?

* Preserving the moments of the distribution?

* Preserving the “decision structure” of the underlying problem?

* Are we trying to preserve the input distribution or the output?

All of the discretization methods discussed herein are intended to
preserve the moments of the underlying input distributions; as we
will see, some do a better job than others.
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Why moments? Input | Model . Output
Uncertainty Uncertainty

e The mean of our model output (e.g., NPV) depends on all the moments
of the input uncertainties.

e Thus, it is not enough, as is often assumed, to simply match the mean of
the input uncertainties.

» For example, suppose your input uncertainty, X, is normally distributed
with 0 mean and unit variance.

* If NPV(x) =x"2 then expected NPV is 1.
* However, the NPV evaluated at the expected value of X is 0.

Implication for Practice: We often discretize input distributions,
combining them in a tree, and produce a cumulative distribution. What
does this distribution mean? The discretizations were not designed to
preserve this cdf. Reading particular fractiles off of this cdf (e.g., the
probability that NPV is less than zero) may not be justified.
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Swanson-Megill fails to faithfully represent the moments
of a lognormal probability distribution function, which is
the distribution it was “designed” for.
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There is no justification for using ESM for any distribution other than the
normal.
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We have found that the following four-point
approximations better represent the lognormal (these
points will match the mean and variance).

o=.25 o=.50 o=".75 c=1.0
v3=0.78 3= 1.75 y3=3.26 v3=6.18
Pi Qi Di Q; Di Qi Di Q;

0.203 90.0 0.151 90.0 0.186 90.0 0.436 90.0
0.288 59.9 0.265 69.1 0.235 773 0.274 84.1
0.303 50.0 0.378 50.0 0.357 50.0 0.017 50.0
0.206 5.0 0.206 5.0 0.222 5.0 0.272 5.0

1.3

1.6
o = standard deviation of In X 14 ﬂ\0=0-25
7, =skewness of X 12 \
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To understand the accuracy of each method, let’s consider
a simple example:

* An oil company is considering the purchase of a prospect, whose reserves are
believed to be lognormally distributed with a mean of 90 MMBOE and a
standard deviation of 118 MMBOE (this yields a standard deviation of log-
reserves of 1.0).

» Reserves transact on the market for $5/BOE, but may differ from this.
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The accuracy of the method depends upon the shape of
the value function.

* In the linear case, the accuracy of the output is the same as the accuracy of the
input.

* In the non-linear cases, the failure of the approximations to faithfully represent
the underlying moments (including the higher moments) introduces additional

erTror.

* The bracket mean (equal areas) methods outperform all but the EPT

approximation.
Errorin Mean Error in Variance

Approximation concave linear convex | concave linear convex

4-pt LN -1% 0% -1% 30% 0% -57%

EPT 0% -1% -4% -18% -36% -72%

ESM -3% -5% -9% -45% -60% -83%

MCS -8% -11% -15% -53% -66% -86%

3-pt Bracket Mean 2% 0% -4% -38% -54% -80%

4-pt Bracket Mean 1% 0% 3% -21% 37% 7% /0
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MCS was never intended to be used in a final analysis.

McNamee and Celona (1990, pp. 32-33), cautioned that this shortcut
should be used in the “early stages” of analyzing a decision and that
one needs to carefully assess the distribution and develop a full
discretization (using Equal Areas) “more carefully later on!” [emphasis
in original].

Implication for Practice: Over time, this guidance has been widely
forgotten and today MCS is commonly applied without regard for the
shape of the underlying distribution and is not followed with a
secondary and more careful assessment and discretization.

The Decision Analysis Cycle

Initial
Problem _|Deterministic _ | Probabilistic = : Decide
>| Structure > . > : >| Appraisal >
Statement Analysis Analysis
1 Refinement

Swanson-Megill is being used as its advocates have suggested.
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We don’t have to worry about this, because we simulate
everything! Really?

e Discretizations result in approximation error. Monte Carlo methods have
sampling error.

e When we simulate, we compute a mean (the average of all the trials).
According to the Central Limit Theorem?, for a large number of samples, this
mean is normally distributed.
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* The Edgeworth expansion must be used for higher moments and when the underlying pdf is skewed.
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The best discretization methods are equivalent to tens of
thousands (or more) of Monte Carlo trails.

Raw EPT

Moment U@b) N(0,0) TOb2) EA) Ll
First (mean) oo oo o >]MM 29,499
Second 4,830 >1MM 67,654 57470 2,781
Third 1,940 oo 24,388 3,918 48,591
Raw ESM

Moment U@b) N(0,0) TOb2) EA) Ll
First (mean) oo oo o >IMM 2,495
Second 2,128 36,165 9,745 1,674 941
Third 855 oo 3,508 498 34,475
Raw MCS5

Moment U@,b) N(0,0) TOb2) EA) Ll
First (mean) oo oo o 1,451 560
Second 30,732 240 14,068 407 676
Third 12,347 oo 5,064 207 35,520

Note: =1 MM = “more than 1 million”
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Recommendations for Practice

« If possible, use Gaussian Quadrature or moment matching.
* The Equal Areas method (Bracket Mean) is a reasonable approach.

* Direct application of 25-50-25 or 30-40-30 to all distributions, without regard
for their shape, should not be considered acceptable practice.

* Recall, 25-50-20 was never intended to be used this way; 30-40-30,
however, was.

* Use of 30-40-30 for lognormal distributions is especially error prone. If you
must, please apply it to the LOG of the uncertainty.

e In this case 30-40-30 is nearly exact.
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Are you looking to hire very smart students with deep
training In decision analysis?

Look no further!

The Graduate Program in Operations Research at UT has very
good (domestic) students looking for summer and full-time jobs
in decision analysis.

Robert Hammond is here today. Please spend some time with
him!
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