Discounting Effectiveness

James C. Felli
Naval Postgraduate School
Kent D. Wall
Naval Postgraduate School

What are we talking about?

A class of decision problems characterized by:
$>$ multiyear profile
$>$ importance of timeliness
$>$ changing effectiveness
Examples might include:
\square adding R\&D capacity
\square developing an in-house capability
\square building strategic partnerships
But we're going to talk about some boats...

Once upon a threat...

A small island nation faces two maritime threats:
$>$ sea-based smuggling of luxury goods

- reducing tax revenue
$>$ fishery predation by foreign fishing fleets
- jeopardizing food supply

To counter these threats, the government has decided to procure and operate a fleet of Offshore Patrol Vessels (OPV). Two types of vessel are available, A and B.

Cost-effectiveness

Common approach to C-E Analysis

π

נیּ

Comparing alternatives

Suppose we apply these models and determine:

$$
\begin{aligned}
& \mathrm{MOE}_{\mathrm{A}}=0.5 \\
& \mathrm{MOE}_{\mathrm{B}}=0.6 \\
& \operatorname{Cost}_{\mathrm{A}}=\$ 52 \mathrm{M} \\
& \operatorname{Cost}_{\mathrm{B}}=\$ 57 \mathrm{M}
\end{aligned}
$$

Two important issues

Issue 1 We are comparing a discounted LCC with a non-discounted MOE
Not a problem if timing is not a concern
Issue 2 MOE is representative for a single vessel in a "head-to-head" comparison
Not a problem if the MOE of k-many vessels is k times the MOE of one.

Effectiveness over time...

Think about building up a level of effectiveness over time (proxied by number of vessels operating).

A fleet effectiveness function

Consider a (pure) fleet MOE function of the form:

Back to our two OPVs

Suppose that $\mathrm{MOE}_{\mathrm{A}}=0.5$ and $\mathrm{MOE}_{\mathrm{B}}=0.6$. Further suppose that:
$>$ A is available for procurement next year at a rate of 2 vessels per year.
$>\mathrm{B}$ will not available to procure for two years, but can be procured at a rate of 3 vessels per year.

For simplicity, we assume that personnel and maintenance constraints will limit the final fleet to 10 vessels of a single type.

Fleet effectiveness over time

Production of fleet effectiveness over time under the assumption that $\alpha=2$ and $\beta=6$.

	Type A OPVs			Type B OPVs		
Year	Procure	Operate	$\boldsymbol{f}()$.	Procure	Operate	$\boldsymbol{f}()$.
0	0	0	0	0	0	0
1	2	0	0	0	0	0
2	2	2	0.054	3	0	0
3	2	4	0.199	3	3	0.139
4	2	6	0.393	3	6	0.451
5	2	8	0.589	1	9	0.741
6	0	10	0.751	0	10	0.811
7	0	10	0.751	0	10	0.811
8	0	10	0.751	0	10	0.811
9	0	10	0.751	0	10	0.811
10	0	10	0.751	0	10	0.811

Fleet effectiveness over time

Graphic depiction of fleet effectiveness over time

Marginal effectiveness over time

Marginal increases of fleet effectiveness over time

Effectiveness decreases over time

r_{t} represents a measure of effectiveness lost due to a one period delay in operation of a vessel.

Tradeoffs

Tradeoffs: "... an OPV operational in year t is worth γ_{t} as much as one operational in year $t+1 \ldots$ "

Behavior: Given the existence of a threat, it's reasonable to assume the decision maker's preference is to have vessels operational sooner rather than later, so $\gamma_{\mathrm{t}} \geq 1 \forall \mathrm{t}$.

Tradeoffs \rightarrow discount rates

Discounting example

Stronger desire for rapid deployment:

Year	$\Delta \mathbf{E}\left(\mathbf{A}, \mathrm{n}_{\mathrm{t}}\right)$	$\Delta_{\mathbf{E}}\left(\mathbf{B}, \mathbf{n}_{\mathfrak{t}}\right)$	γ_{t}	r_{t}	Discount Factor	$\underset{\mathbf{d}^{\Delta} \mathbf{E}(\cdot)}{\text { OPV A }}$	$\underset{\mathbf{d}^{\Delta} \mathbf{E}(\cdot)}{\text { OPV B }}$
0	0	0	4	3			
1	0	0	3	2	0.2500	0	0
2	0.0540	0	3	2	0.0833	0.0045	0
3	0.1452	0.1393	2	1	0.0278	0.0040	0.0039
4	0.1942	0.3119	2	1	0.0139	0.0027	0.0043
5	0.1954	0.2896	2	1	0.0069	0.0014	0.0020
6	0.1618	0.0704	1	0	0.0035	0.0006	0.0002
7	0	0	1	0	0.0035	0	0
8	0	0	1	0	0.0035	0	0
9	0	0	1	0	0.0035	0	0
10	0	0	1	0	0.0035	0	0
	0.7506	0.8111				0.0132	0.0105
Undiscounted MOE						Discounted MOE	

Discounting example

Lesser desire for rapid deployment:

Year	$\Delta \mathbf{E}\left(\mathbf{A}, \mathrm{n}_{\mathrm{t}}\right)$	$\Delta^{\mathbf{E}}\left(\mathbf{B}, \mathbf{n}_{\mathfrak{t}}\right)$	γ_{t}	r_{t}	Discount Factor	$\underset{\mathbf{d}^{\Delta} \mathbf{E}(\cdot)}{\text { OPV A }}$	$\underset{\mathbf{d}^{\Delta} \mathbf{E}(\cdot)}{\text { OPV B }}$
0	0	0	3	2			
1	0	0	2	1	0.3333	0	0
2	0.0540	0	1.5	0.5	0.1667	0.0090	0
3	0.1452	0.1393	1	0	0.1111	0.0161	0.0155
4	0.1942	0.3119	1	0	0.1111	0.0216	0.0347
5	0.1954	0.2896	1	0	0.1111	0.0217	0.0322
6	0.1618	0.0704	1	0	0.1111	0.0180	0.0078
7	0	0	1	0	0.1111	0	0
8	0	0	1	0	0.1111	0	0
9	0	0	1	0	0.1111	0	0
10	0	0	1	0	0.1111	0	0
	0.7506	0.8111				0.0864	0.0901
Undiscounted MOE						Discounted MOE	

C-E consequences

Lesser desire for rapid deployment MB/MC required

Benefits

$>$ Provides a framework to examine consequences of time preferences
$>$ Can be used to examine consequences of:

- Obsolescence (technology, threat, etc.)
- Changes in mission/strategy
- Developing capabilities over time
- Anything affecting MOE at the margin

Caveats

$>$ Infinite postponement and immediate consumption (Keeler and Cretin 1993)

Rely on constant discount rates and perfect exchangeability of present and future money and benefits (Chapman and Elstein 1995)

- Employ a time varying vice a constant discount rate (Harvey 1994)
- Perfect exchangeability is not feasible in defense (threat and budgeting)

Caveats

$>$ A discounting approach can induce a short-run focus and lead decision makers to always favor upgrading existing systems rather than investing in new ones. This can increase risks in the future.

- In the OPV example, a fleet of 7 type C vessels with $\mathrm{MOE}_{\mathrm{C}}=0.1$ available for immediate procurement is preferred to either fleet of 10 type A or 10 type B vessels due to their delay.

That's all, folks!

