Cleaner Analysis: Quicker Decisions Three Examples from Government

Decision Analysis Affinity Group

Houston Meeting, 21 April 2011

Mark A. Powell Attwater Consulting

attwater@aol.com 208-521-2941

Introduction

- Technical Decisions for Government Projects Often Very Difficult
 - Usually, Lots of Money Involved
 - Lives may be at Stake
 - Data may be Sparse
- When a Decision Analysis is Presented, Decision Makers Often
 - Ask Questions about Assumptions
 - Order Re-analysis with Different Assumptions
 - Generally Not Satisfied with Point Estimates
 - Afraid of Sparse Data
- Today will Share Experiences from Three Government Project Decisions for which Clean Analyses Led to Quick Decisions

Decision Problem #1: NASA ISS O₂ Sensor Drift

- On the International Space Station (ISS), The Extra-Vehicular-Activity (EVA) O₂ Sensor Measurements Drifting
 - Sensor Accuracy Requirement: ± 6mmHg for 270 Days post Calibration
 - Errors > 6mmHg: Astronaut
 May Suffer Bends during EVA

- Errors < 6mmHg: Astronaut May Suffer Oxygen Toxicity
- Either may result in *Death* of Astronauts
- NASA Faced with Either
 - Halting ISS EVA's Until Sensor Redesign, Testing, and Deployment
 - Or, Compensating for the Error Drift to Reduce the Risk
- Drift Compensation Results were not Convincing

Decision Problem #2: USCG C130 Cooling Turbine PM

- Cooling Turbine Provides
 Cooling and Pressurization to
 the C130 Crew
- Failure in Service
 - Loss of Cooling, but More Important, Loss of Cabin Pressurization
 - Smoke, Loud, Crew Must Secure
 - Mission Compromised
- Costs
 - Replacement: \$30,000
 - Refurbishment: \$500
- Most Cost Effective Preventative Maintenance Interval?

Decision Problem #3: NASA ISS Bone Fracture Risks

- On-Orbit Astronaut Bone Fractures could have Severe Consequences
 - To the Astronaut
 - To the Mission
- Very Low Probability Event No Astronaut has Ever Broken a Bone during a Mission in History
- Risk Questions
 - What is the Risk of Bone Fracture for Long Mars Missions?
 - How Much will the Risk Increase if International Space Station Missions extend from 180 to 365 Days?

Approach Used for These Decision Problems

- Find a Meaningful Decision Discriminator
 - Some Physical Quantity or Consequence
 - More Importantly, One the Decision Maker Understands and will Use to Make the Decision
- Gather the Available Data
- Use Bayesian Methods
 - Use a Most General Model for Data, Express Decision Discriminator in terms of Model Parameters
 - Use Non-Informative or Pseudo-Ignorance Priors
 - Formulate Joint Posterior Uncertainty Distribution for Model Parameters
- Sample Joint Posterior Uncertainty Distribution using *Markov Chain Monte Carlo* (*MCMC*) Methods

An Aside: Markov Chain Monte Carlo

- Just Like Ordinary Monte Carlo, Except for Sampling Approach
 - Ordinary Monte Carlo Uses Built-in Samplers for Recognizable Models
 - Usually Only Univariate Samplers Available
 - Possible Exception, Multivariate Normal
 - MCMC uses a Markov Chain to Sample a Density Function
 - Any Density Function not Restricted to Recognized Builtin Models, and Any Dimension!
 - Any Combination of Discrete and Continuous, One-sided, Two-sided, and Interval Random Variables
- All that is Required to Use MCMC is an Analytical Expression for the Density Function

Continuing with the Approach

- Use MCMC Samples for the Joint Posterior Uncertainty Distribution for Parameters to Develop Samples of the Uncertainty Distribution for the Decision Discriminator, based on the Data
- Parameterize if Necessary
- Present Uncertainty Distributions for the Decision Discriminator for All Alternatives

Notes: The Available Data

- Most of these Tough Decision Problems Have Few if Any Event Data
 - Risks of Financial Loss Should be Small
 - Risks of Failure Should be Very Small
 - Risks of Loss of Life Should be Tiny
- May have Plenty of Censored Data
 - Observations that Event or Loss has Not Occurred
 - Classical Statistical Approaches Almost Always Ignore
 - Resulting Bayesian Posterior Formulations Almost Always Analytically Intractable
- May have Outliers Or, Maybe Not
 - May be Just one of those Rare Events
 - Should never Ignore Outliers

Notes: Bayesian Methods

- Decision Theory/Analysis has Long Historical Basis using Bayesian Methods
- Select the Most General Model Possible for Data

One-sided Data: Weibull

Two-sided Data: Non-central t

Interval Data: Beta

Avoids Some Assumptions

- Use of Non-Informative, or Jeffreys', or Ignorance, or Reference Priors Obviates Questionable Assumptions
 - Usually Produces Analytically Intractable Joint Posterior
 - Forced to Use MCMC
 - To Achieve Markov Chain Stability, Sometimes Must Wisely Truncate the Ignorance Prior – Pseudo-Ignorance Prior
- Bounds Results Consistent with Information Theory

Notes:

Using MCMC Joint Samples to Obtain Decision Discriminator Uncertainty Model Samples based on the Data

- Fairly Simple Process: Evaluate Decision Discriminator at Joint MCMC Samples of Parameters
- What this Accomplishes

$$pd(D | data) \propto \iiint_{\substack{parameter \\ domains}} D(| params) * pd(params | data) dparams$$

- Performs the Required Marginalization Integrals
- Produces Samples of the Uncertainty Model for the Decision Discriminator

If Needed, Parameterize

- For Continuous Alternatives: Parameterize Decision Discriminator Uncertainty Distributions as Function of Alternative
- For Data with Covariates: Parameterize Decision Discriminator Uncertainty Distributions as Function of Covariates
- Simple, Merely Requires CPU Time
- Avoids a lot of Decision Maker What if Questions, as well as a lot of Analysis Repeats

Alternative Distribution Presentations

For Discrete Alternatives, Modified Bar Charts
 Work Well for Risk Comparisons

Now, Decision Problem #1 Observed ISS O₂ Sensor Errors

- Linear Least
 Squares Used to
 Look at Drift for
 Five Sensors
- All Appeared to Drift in Same Direction, with Similar Rates
- Compensation for Drift Might Reduce the Risk Enough

Compensation Scheme: Use Least Squares on All Data to Estimate Slope and Intercept, and Remove from Sensor Measurements

Sensor Errors After Drift Compensation

- Unacceptable
 Drift Errors
 Occur Even
 Earlier!
- Did the Risk

 Actually

 Increase?
- What was the Risk without Drift Compensation?
- No Answers, No Decision!

Decision Analysis

- Decision Discriminator: Risk of Exceeding e_{max} (±6mmHg) at TSC = 270 days $R(|e_s| > e_{max} | 270, \mu_0, \mu', \sigma_s) = 2*\Phi(-e_{max} | \mu_0 + \mu' * 270, \sigma_s)$
- Data: Preceding Slides, Before and After Compensation
- Bayesian Approach
 - Used Normal Model with Covariate for TSC since Linear Regression was Used to Compute Drift Correction Parameters
 - Joint Posterior with Ignorance Priors NOT Analytically Tractable, Used MCMC Sampling
- Decision Discriminator Uncertainty Model Transform

Use Modified Bar Charts before and after Compensation

Another Aside: Decision Discriminator Uncertainty

- Obtain Samples by Simply Evaluating Decision
 Discriminator Equation at Joint Samples of Posterior
- Suppose Want to Know Assurance *Based on the Data* that Risk of Exceeding e_{max} at TSC = 270 days is Less than 5%
 - Have M Joint Posterior Samples from MCMC
 - Evaluate Decision Discriminator Equation at Each Joint Sample at TSC = 270 days – Get M Samples of Risk of Exceeding e_{max} at TSC = 270 days Based on the Data (for Modified Bar Charts)
 - Count Number of Risk Samples < 0.05 and divide by M

$$P(R(|e_s| > e_{max} | TSC = 270) < 0.05 | data)$$

$$= \frac{\sum_{i=1}^{M} \left[1 \mid 2 * \Phi\left(-e_{max} \mid \mu_{0i} + \mu'_{i} * 270, \sigma_{si}\right) < 0.05 \right]}{0 \mid 2 * \Phi\left(-e_{max} \mid \mu_{0i} + \mu'_{i} * 270, \sigma_{si}\right) \ge 0.05 \right]}$$

Risk Assessment Results

- Obtained 10,000 Joint MCMC Samples of μ_0 , μ' , and σ_s for Covariate Data With and Without Drift Compensation
- Used to Obtain Risk Samples for both at TSC = 270 days

- 90% Certain Based on the Data, Risk of Exceeding e_{max} without Drift Compensation within 270 Days Between 36% and 46%
- 95% Certain Based on the Data, Risk of Exceeding e_{max} with Drift Compensation within 270 Days is less than 1.5%

Decision Problem #2 USCG C130 Cooling Turbine PM

- 60:1 Cost Ratio, Replace: Maintain
- Only Had Five Failure Data: 463, 538, 1652, 1673, and 2462 flight hours
- Only Had One Survivor Datum: 96 flight hours
- What PM Interval to Select?
- USCG Decision Makers Paralyzed

Decision Analysis

• Decision Discriminator: CS_{tpm} – Cost Savings per Flight Hour in performing Preventative Maintenance at the Interval of t_{pm} flight hours over Allowing Failures in Service

$$CS_{tpm} = \left(\frac{C_{rep}}{\eta}\right) \gamma \left(\frac{\beta - 1}{\beta}, \left(\frac{t_{pm}}{\eta}\right)^{\beta}\right) - \left(\frac{C_{pm}}{t_{pm}}\right)^{*} e^{-\left(\frac{t_{pm}}{\eta}\right)^{\beta}}$$

- Data: Preceding Slides, 5 Failures Events, One Survivor
- Bayesian Approach
 - Used Weibull Model
 - Posterior with Ignorance Priors NOT Analytically Tractable, Use MCMC Sampling
- Decision Discriminator Uncertainty Model Transform

• Use Parameterization as a Function of t_{pm}

Cost Savings Risks Using a PM Interval - Parameterized

- Full Distributions Per Flight Hour Based Solely on The Data, Per Bird – CS_{tpm}
- Obtained by Evaluating CS_{tpm} at the Joint Posterior MCMC Samples Parameterized as a function of PM Interval in flight hours
- Plotted Only 5th, Most Likely, and 95th percentile Cost Savings Risks
- At t_{pm} = 250 hours, 95%
 Certain, based on the data, that USCG can SAVE at least \$17 per flight hour per bird

Decision Problem #3 Available NASA Bone Fracture Data

- 977 Astronaut Missions of Varying Lengths (as of May 2005)
- No Events Observed
 - No Bones Broken
 - Did Observe 977
 Mission Lengths
 without a Broken
 Bone

Decision Analysis

- Decision Discriminator: Risk of Bone Fracture $R_{T_{\mu}} = 1 e^{-\left(\frac{T_{M}}{\eta}\right)}$
- Data: Preceding Slides, 977 Censored Data
- **Bayesian Approach**
 - **Used Weibull Model**
 - Posterior with Ignorance Priors NOT Analytically Tractable, **Use MCMC Sampling**
- **Decision Discriminator Uncertainty Model Transform**

Use Parameterization and Modified Barcharts

Parameterized Risk Results

- Risk Uncertainty
 Distribution Parameterized
 As a Function of Mission
 Duration Obtained by
 Evaluating Risk Equation at MCMC Samples
- Parameterized and Plotted Various Assurance Levels (5, 25, 50, 75, 95%)
- For Mars Missions of 270
 Days We Can be 95%
 Certain that Risk of fracture during the Mission is < 3%,</p>
 Based on the Information Available

The ISS Mission Extension Question

Summary

- The Decision Analyses Used were Clean
 - Selected Meaningful and Useful Decision Discriminators
 - Using Ignorance or Pseudo-Ignorance Priors Limited Use of Questionable Assumptions
 - Used Parameterizations
 - Presented Uncertainty Distributions for Decision Discriminators for All Alternatives, based on the Data
- Decisions Made Almost Immediately for All Three Examples
 - Decision Makers were Comfortable Deciding
 - Saved Money in All Cases

Conclusion

- Have Published Papers for these 3
 Examples, Contact me and I will Share
- Available to Help with *Tough* Decision Analysis Problems
- Or, I Can Teach Your Folks How to Perform Clean Decision Analysis and Achieve Quick Decision
- Link with me: http://www.linkedin.com/in/attwatermarkpowell

Contact Information

Mark A. Powell
Attwater Consulting

attwater@aol.com

http://www.linkedin.com/in/attwatermarkpowell 208-521-2941