Business Case
 2 Stage Stochastic Programming Approach for R\&D Project Selection

Krishna Chepuri
Portfolio Analyst, Portfolio Planning
J\&JPRD

Hypothetical Business Problem in a Pharmaceutical Company

* 5 Drug Development Projects set to begin Phase III trials in 2005
-Can be possibly delayed by a year
-Assume they have no scientific uncertainty
* 2 Licensing Candidates-"now or never" opportunities
-Both will complete Phase II trials at the end of 2005 and possibly enter Phase III trials
- All uncertainty resides in their Phase II trials only

Potential optimization problem

Project	Phase	Phase POS	PTRS	2005 OOP (\$MM)	$\begin{gathered} 2006 \text { OOP } \\ \text { (\$MM) } \end{gathered}$	$\begin{gathered} \hline \text { NPV } \\ (\$ M M) \end{gathered}$	ENPV (\$MM)
A	III	100\%	100\%	\$50	\$45	\$400	\$400
B	III	100\%	100\%	\$60	\$45	\$400	\$400
C	III	100\%	100\%	\$85	\$65	\$900	\$900
D	III	100\%	100\%	\$45	\$35	\$550	\$550
E	III	100\%	100\%	\$60	\$60	\$300	\$300
Licensing Candidate \#1	II	50\%	50\%	\$150	\$150	\$1000	\$425
Licensing Candidate \#2	II	70\%	70\%	\$150	\$250	\$1000	\$625

Potential optimization problem

Delayed scenario valuations for the 5 Phase III Projects

Project	2005 OOP $(\$ \mathrm{MM})$	2006 OOP $(\$ M M)$	NPV (\$MM)	ENPV (\$MM)
A (Delayed)	-	$\$ 50$	$\$ 200$	$\$ 200$
B (Delayed)	-	$\$ 60$	$\$ 300$	$\$ 300$
C (Delayed)	-	$\$ 85$	$\$ 850$	$\$ 850$
D (Delayed)	-	$\$ 45$	$\$ 150$	$\$ 450$
E (Delayed)	-	$\$ 60$		$\$ 150$

2005-2006 R\&D Budget

Budget for 2005-\$350 MM

* Budget for 2006-\$450MM
* For the rest of the discussion, let us assume that these are hard constraints that cannot be violated under any circumstances

Project Selection Problem

* Objective: Maximize Portfolio's Expected Net Present Value
* Problem: Which of the "on the table" projects should be funded/delayed in 2005?

Which of the 2 Licensing candidates should be selected in 2005 ?

Solution within Deterministic Framework

*The problem has 2 classes of stochastic parameters

- 2006 costs for the 2 licensing candidates
- NPV for the 2 licensing candidates

Replace stochastic elements by their expected values

* Solve as a Binary Integer Problem

Solution within the Deterministic Framework

Decisions in 2005	
Project	
A	Decision
B	Fund in 2005
C	Delay in 2005
D	Fund in 2005
E	Delay in 2005
LC \#1	Fund in 2005
LC \#2	Frop

Decisions in 2006

Project	Decision
B (Delayed)	Fund
D (Delayed)	Fund

Results in Portfolio ENPV = \$3.005 B

Consequence of Implementing Solution

Scenario 1:
Decisions in 2006

Project	Decision
B (Delayed)	Drop
D (Delayed)	Drop

Scenario 2:
Decisions in 2006

Project	Decision
B (Delayed)	Fund
D (Delayed)	Fund

Simulated Portfolio ENPV will be $.7 * 2600+.3 * 2200=\$ 2.480 B$
Not $\$ 3.005$ B

Solving as a 2 Stage Stochastic Integer Problem

* Based on projects succeeding or failing, second stage decisions taken in 2006
* Second stage decisions constrained by values of first stage decisions
* Make first stage decisions non anticipatively such that expected value of all possible second stage decisions is also maximized

Solving as a 2 Stage Stochastic Integer Program

Solution from the 2 Stage Approach

Scenario 1:
Decisions in 2006

Decis	n 2005	Licensing Candidate \#2 Succeeds \qquad
Project	Decision	
A	Fund in 2005	
B	Fund in 2005	
C	Fund in 2005	
D	Delay in 2005	
E	Delay in 2005	
LC \#1	Drop	
LC \#2	Fund in 2005	

Project	Decision
D (Delayed)	Fund
E (Delayed)	Drop

Scenario 2:
Decisions in 2006

Project	Decision
D (Delayed)	Fund
E (Delayed)	Fund

Simulated Portfolio ENPV will be $=\$ 2.850$ B

Concluding Remarks

* Implementation of this solution results in a portfolio ENPV = \$2.850 B vs. \$2.480 B using Deterministic approach
* We get a better ENPV because we have incorporated the expected consequences of all possible corrective actions in 2006 into the objective function
* The 2 stage or multi-stage formulation can be used for trade-off analysis within small portfolios (not more than 10 projects)

Appendix I

Deterministic Problem

Optimization problem - delayed scenarios

Project	Decision variables
A	X 1
B	X 2
C	X 3
D	X 4
E	X 6
Licensing candidate \#1	Y 1
Licensing candidate \#2	Y 2
A (delayed)	Y 3
B (delayed)	Y 4
C (delayed)	Y 5
D (delayed)	
E (delayed)	

$X(i)=1$ implies that a project is funded in 2004

Yi = 1 implies that a project is delayed and funded in 2005 instead

Formulating the problem as a deterministic optimization problem

Maximize the portfolio ENPV =

$$
\begin{gathered}
\mathrm{X} 1^{*} 400+\mathrm{X} 2^{*} 400+\mathrm{X} 3^{*} 900+\mathrm{X} 4^{*} 550+\mathrm{X} 5^{*} 300 \\
+ \\
\mathrm{X} 6^{*}\left(1000^{*} .5-150^{*} .5\right)+X 7^{*}\left(1000^{*} .7-150^{*} .3\right) \\
+ \\
\mathrm{Y} 1^{*} 200+\mathrm{Y} 2^{*} 300+Y 3^{*} 850+Y 4^{*} 450+Y 5^{*} 150
\end{gathered}
$$

2004 Budgetary constraints:

$$
X 1^{*} 50+X 2^{*} 60+X 3^{*} 85+X 4^{*} 45+X 5^{*} 60+X 6^{*} 150+X 7^{*} 150 \leq 350
$$

2005 Budgetary constraint

$$
\begin{aligned}
X 1^{*} 45 & +X 2^{*} 45+X 3^{*} 65+X 4^{*} 35+X 5^{*} 60 \\
& +X 6^{*}\left(150^{*} .5\right)+X 7^{*}\left(250^{*} .7\right)+ \\
Y 1^{*} 50 & +Y 2^{*} 60+Y 3^{*} 85+Y 4^{*} 45+Y 5^{*} 60 \leq 450
\end{aligned}
$$

Formulating the problem as a deterministic optimization problem
"Mutual exclusivity" constraints:
$\mathrm{Xi}+\mathrm{Yi} \leq 1$ for all i

Binary Constraints:
$X i, Y i \in[0,1]$ for all i

Solution within the deterministic framework

Project	Decision variables	Values
A	X1	1
B	X2	0
C	X3	1
D	X4	0
E	X5	1
LC \#1	X6	0
LC \#2	Y1	1
A delayed	Y2	0
B delayed	Y3	1
C delayed	Y4	0
D delayed	Y5	0
E delayed	Objective value $=\$ 3005$	

-The solution:
-Forego Licensing candidate \# 1
-Delay B,D and fund them in 2005 instead
-However, such a solution cannot always be implemented in totality
-Specifically, in 2005, both B and D cannot be funded if Licensing candidate \#2's Phase II trials succeed
-Consequently, implementing this solution will result in a Portfolio ENPV that is different from $\$ 3005$ MM

Appendix II

Stochastic Problem

2 stage stochastic integer problem- continued

First stage decision variables

Project	Decision variable
A	X1
B	X2
C	X3
D	X4
E	X5
LC \#1	X6
LC \#2	X7

2 stage stochastic integer problem- continued

Second stage decision variables for 4 mutually exclusive scenarios

Description	Scenario 1 LC\# 1, LC\#2 fail	Scenario 2 LC\#1, LC\#2 succeed	Scenario 3 LC\#1 succeeds, LC \#2 fails	Scenario 4 LC\#1 fails, LC\#2 succeeds
A (delayed)	$\mathrm{Y} 1(1)$	$\mathrm{Y} 1(2)$	$\mathrm{Y} 1(3)$	$\mathrm{Y} 1(4)$
B (delayed)	$\mathrm{Y} 2(1)$	$\mathrm{Y} 2(2)$	$\mathrm{Y} 2(3)$	$\mathrm{Y} 2(4)$
C (delayed)	$\mathrm{Y} 3(1)$	$\mathrm{Y} 3(2)$	$\mathrm{Y} 3(3)$	$\mathrm{Y} 3(4)$
D (delayed)	$\mathrm{Y} 4(1)$	$\mathrm{Y} 4(2)$	$\mathrm{Y} 4(3)$	$\mathrm{Y} 4(4)$
E (delayed)	$\mathrm{Y} 5(1)$	$\mathrm{Y} 5(2)$	$\mathrm{Y} 5(3)$	$\mathrm{Y} 5(4)$
Corrective action I	$\mathrm{Z6}(1)$	$\mathrm{Z6}(2)$	$\mathrm{Z} 6(3)$	$\mathrm{Z}(4)$
Corrective action II	$\mathrm{Z7}(1)$	$\mathrm{Z7}(2)$	$\mathrm{Z}(3)$	$\mathrm{Z7}(4)$

Continued

* Main problem

> Max $\mathrm{X} 1^{*} 400+\mathrm{X} 2^{*} 400+X 3^{*} 900+X 4^{*} 550+X 5^{*} 300+X 6 * 1000+$ $X 7 * 1000+$ Expected value of the "recourse" actions
such that
$X 1 * 50+X 2 * 60+X 3 * 85+X 4 * 45+X 5 * 60+X 6 * 150+X 7 * 150 \leq 350$ (2004 budgetary constraint)

2 stage stochastic integer problem- continued

Scenario 1 - Both licensing projects fail (occurs with a 15\% probability)

Sub-problem: Max Y1(1)*200 + Y2(1)*300 + Y3(1)*850 + Y4(1)*450 +

$$
Y 5(1)^{*} 150-Z 6(1)^{*}(1000+150)-Z 7(1)^{*}(1000+150)
$$

Corrective action to the portfolio's NPV

2005 budgetary constraint:

$$
\begin{aligned}
& \mathrm{X} 1^{*} 45+\mathrm{X} 2^{*} 45+\mathrm{X} 3^{*} 65+\mathrm{X} 4^{*} 35+\mathrm{X} 5^{*} 60+\mathrm{X} 6^{*}(0)+\mathrm{X} 7^{*}(0) \\
& +\mathrm{Y}(1)^{*} 50+\mathrm{Y} 2(1)^{*} 60+\mathrm{Y} 3(1)^{*} 85+\mathrm{Y} 4(1)^{*} 45+\mathrm{Y} 5(1)^{*} 60 \leq 450
\end{aligned}
$$

Z6(1) = X6; Z7(1) = X7
Ensures that the a particular corrective action to the portfolio NPV will be made only if the licensing candidates were chosen in the first stage to begin with

2 stage stochastic integer problem- continued

- Scenario 2- Both licensing projects succeed (occurs with a 35% probability)
. Sub-problem: Max Y1(2)*200 + Y2(2)*300 + Y3(2)* $850+Y 4(2)^{*} 450+$

$$
\mathrm{Y} 5(2)^{*} 150-\mathrm{Z} 6(2)^{*}(0)-\mathrm{Z7}(2)^{\star}(0)
$$

\% 2005 budgetary constraint: Corrective action to the portfolio's NPV $X 1^{*} 45+X 2^{*} 45+X 3 * 65+X 4^{*} 35+X 5^{*} 60+X 6^{*}(150)+X 7^{*}(250)$
$+Y 1(2) * 50+\mathrm{Y} 2(2) * 60+\mathrm{Y} 3(2)^{*} 85+\mathrm{Y} 4(2)^{*} 45+\mathrm{Y} 5(2)^{*} 60 \leq 450$

* $Z 6(2)=X 6 ; Z 7(2)=X 7$

Ensures that the a particular corrective action to the portfolio NPV will be made only if the licensing candidates were chosen in the first stage to begin with
*"Mutual exclusivity" and binary constraints

2 stage stochastic integer problem- continued

Scenario 3 - LC \#1 succeeds, LC \#2 fails (occurs with a 15\% probability)
. Sub-problem: Max Y1(3)*200 + Y2(3)*300 + Y3(3)* $850+Y 4(3)^{*} 450+$

$$
Y 5(3)^{*} 150-Z 6(3)^{*}(0)-Z 7(3)^{*}(1000+150)
$$

$\% 2005$ budgetary constraint: Corrective action to the portfolio's NPV X1*45 + X2*45 + X3* $65+X 4^{*} 35+X 5^{*} 60+X 6 *(150)+X 7^{*}(0)$ $+\mathrm{Y} 1(3)^{*} 50+\mathrm{Y} 2(3)^{*} 60+\mathrm{Y} 3(3)^{*} 85+\mathrm{Y} 4(3){ }^{*} 45+\mathrm{Y} 5(3)^{*} 60 \leq$450
($\mathrm{Z} 6(3)=\mathrm{X} 6 ; \mathrm{Z7}(3)=\mathrm{X} 7$

Mutual Exclusivity and binary constraints

2 stage stochastic integer problem- continued

Scenario 4 - LC \#1 fails, LC \#2 succeeds (occurs with a 35\% probability)

* Sub-problem: Max Y1(4)*200 + Y2(4)*300 + Y3(4)*850 + Y4(4)*450 +
Y5(4)*150-Z6(4)*(1000+150)-Z7(4)*(0)

Corrective action to the portfolio's NPV

- 2005 budgetary constraint:
$X 1 * 45+X 2^{*} 45+X 3 * 65+X 4^{*} 35+X 5 * 60+X 6^{*}(0)+X 7^{*}(250)$
$+Y 1(4) * 50+Y 2(4) * 60+Y 3(4)^{*} 85+Y 4(4)^{*} 45+Y 5(4)^{*} 60 \leq 450$
($\mathrm{Z6}(4)=\mathrm{X} 6 ; \mathrm{Z}(4)=\mathrm{X} 7$
* Mutual Exclusivity and binary constraints

Complete formulation reduces to a large linear integer program

```
                    Max
    X1*400 + X2*400 +X3*900 +X4*550 +X5*300 + X6*1000 + X7*1000
    +
Y1(1)*200 + Y2(1)*300 + Y3(1)*850 + Y4(1)*450 +Y5(1)*150-Z6(1)*(1000+150)-Z7(1)*(1000+150)*. 15
    +
Y1(2)*200 + Y2(2)*300 + Y3(2)*850 + Y4(2)*450 +Y5(2)*150-Z6(2)*(0) -Z7(2)*(0) *. 35
    +
Y1(3)*200 + Y2(3)*300 + Y3(3)*850 + Y4(3)*450 +Y5(3)*150-Z6(3)*(0) -Z7(3)*(1000+150) *. 15
    +
Y1(4)*200 + Y2(4)*300 + Y3(4)*850 + Y4(4)*450 +Y5(4)*150-Z6(4)*(1000+150) -Z7(4)*(0) *. }1
```


Constraints

```
X1*50 + X2*60 + X3**5 + X4*45 + X5*60 +X6*150 + X7*150 \leq 350
(2004 budgetary constraint)
All the sub problem constraints
```

