Business Case 2 Stage Stochastic Programming Approach for R&D Project Selection

> Krishna Chepuri Portfolio Analyst, Portfolio Planning J&JPRD

Hypothetical Business Problem in a Pharmaceutical Company

✤ 5 Drug Development Projects set to begin Phase III trials in 2005

•Can be possibly delayed by a year

•Assume they have no scientific uncertainty

2 Licensing Candidates-"now or never" opportunities

•Both will complete Phase II trials at the end of 2005 and possibly enter Phase III trials

• All uncertainty resides in their Phase II trials only

Potential optimization problem

Project	Phase	Phase POS	PTRS	2005 OOP (\$MM)	2006 OOP (\$MM)	NPV (\$MM)	ENPV (\$MM)
Α	- 111	100%	100%	\$50	\$45	\$400	\$400
В	- 111	100%	100%	\$60	\$45	\$400	\$400
С		100%	100%	\$85	\$65	\$900	\$900
D		100%	100%	\$45	\$35	\$550	\$550
E		100%	100%	\$60	\$60	\$300	\$300
Licensing Candidate #1	II	50%	50%	\$150	\$150	\$1000	\$425
Licensing Candidate #2	II	70%	70%	\$150	\$250	\$1000	\$625

Potential optimization problem

Delayed scenario valuations for the 5 Phase III Projects

Project	2005 OOP (\$MM)	2006 OOP (\$MM)	NPV (\$MM)	ENPV (\$MM)
A (Delayed)	-	\$50	\$200	\$200
B (Delayed)	-	\$60	\$300	\$300
C (Delayed)	-	\$85	\$850	\$850
D (Delayed)	-	\$45	\$450	\$450
E (Delayed)	-	\$60	\$150	\$150

2005-2006 R&D Budget

- Budget for 2005 \$350 MM
- Budget for 2006 \$450MM
- For the rest of the discussion, let us assume that these are hard constraints that cannot be violated under any circumstances

Project Selection Problem

Objective: Maximize Portfolio's Expected Net Present Value

- Problem: Which of the "on the table" projects should be funded/delayed in 2005?
- Which of the 2 Licensing candidates should be selected in 2005?

Solution within Deterministic Framework

The problem has 2 classes of stochastic parameters

- 2006 costs for the 2 licensing candidates
- NPV for the 2 licensing candidates

- Replace stochastic elements by their *expected* values
- Solve as a Binary Integer Problem

Solution within the Deterministic Framework

Decisions in 2005

Project	Decision
Α	Fund in 2005
В	Delay in 2005
С	Fund in 2005
D	Delay in 2005
E	Fund in 2005
LC #1	Drop
LC #2	Fund in 2005

Decisions in 2006

Project	Decision
B (Delayed)	Fund
D (Delayed)	Fund

Results in Portfolio ENPV = \$3.005 B

Consequence of Implementing Solution

Simulated Portfolio ENPV will be .7*2600 + .3*2200 = \$2.480 B Not \$3.005 B

Solving as a 2 Stage Stochastic Integer Problem

- Based on projects succeeding or failing, second stage decisions taken in 2006
- Second stage decisions constrained by values of first stage decisions
- Make first stage decisions non anticipatively such that expected value of all possible second stage decisions is also maximized

Solving as a 2 Stage Stochastic Integer Program

Solution from the 2 Stage Approach

Simulated Portfolio ENPV will be = \$2.850 B

Concluding Remarks

- Implementation of this solution results in a portfolio ENPV = \$2.850 B vs. \$2.480 B using Deterministic approach
- We get a better ENPV because we have incorporated the expected consequences of all possible corrective actions in 2006 into the objective function
- The 2 stage or multi-stage formulation can be used for trade-off analysis within small portfolios (not more than 10 projects)

Appendix I

Deterministic Problem

Optimization problem – delayed scenarios

Project	Decision variables
А	X1
В	X2
С	X3
D	X4
E	X5
Licensing candidate #1	X6
Licensing candidate #2	X7
A (delayed)	Y1
B (delayed)	Y2
C (delayed)	Y3
D (delayed)	Y4
E (delayed)	Y5

X(i) = 1 implies that a project is funded in 2004

Yi = 1 implies that a project is delayed and funded in 2005 instead

Formulating the problem as a deterministic optimization problem

Maximize the portfolio ENPV =

X1*400 + X2*400 + X3*900 +X4*550 +X5*300 + X6*(1000*.5 -150*.5) + X7*(1000*.7 - 150*.3) + Y1*200 + Y2*300 + Y3*850 + Y4*450 + Y5*150

2004 Budgetary constraints: X1*50 + X2*60 + X3*85 + X4*45 + X5*60 + X6*150 + X7*150 \leq 350

 $\begin{array}{l} \textbf{2005 Budgetary constraint} \\ \textbf{X1*45 + X2*45 + X3*65 + X4*35 + X5*60} \\ &\quad + \textbf{X6*(150*.5) + X7*(250*.7)+} \\ \textbf{Y1*50 + Y2*60 + Y3*85 + Y4*45 + Y5*60} & \leq 450 \end{array}$

Formulating the problem as a deterministic optimization problem

* "Mutual exclusivity" constraints: Xi + Yi \leq 1 for all i

✤ Binary Constraints:
 Xi, Yi ∈ [0,1] for all i

Solution within the deterministic framework

Project	Decision variables	Values	
А	X1	1	
В	X2	0	
С	X3	1	
D	X4	0	
E	X5	1	
LC #1	X6	0	
LC #2	X7	1	
A delayed	Y1	0	
B delayed	Y2	1	
C delayed	Y3	0	
D delayed	Y4	1	
E delayed	Y5	0	
	Objective value= \$3005		

•The solution:

Forego Licensing candidate # 1
Delay B,D and fund them in 2005 instead

•However, such a solution cannot always be implemented in totality

•Specifically, in 2005, both B and D cannot be funded if Licensing candidate #2's Phase II trials succeed

•Consequently, implementing this solution will result in a Portfolio ENPV that is different from \$3005 MM

Appendix II

Stochastic Problem

First stage decision variables

Project	Decision variable
А	X1
В	X2
С	X3
D	X4
E	X5
LC #1	X6
LC #2	X7

Second stage decision variables for 4 mutually exclusive scenarios

Description	Scenario 1 LC# 1, LC#2 fail	Scenario 2 LC#1, LC#2 succeed	Scenario 3 LC#1 succeeds, LC #2 fails	Scenario 4 LC#1 fails, LC#2 succeeds
A (delayed)	Y1(1)	Y1(2)	Y1(3)	Y1(4)
B (delayed)	Y2(1)	Y2(2)	Y2(3)	Y2(4)
C (delayed)	Y3(1)	Y3(2)	Y3(3)	Y3(4)
D (delayed)	Y4(1)	Y4(2)	Y4(3)	Y4(4)
E (delayed)	Y5(1)	Y5(2)	Y5(3)	Y5(4)
Corrective action I	Z6(1)	Z6(2)	Z6(3)	Z6(4)
Corrective action II	Z7(1)	Z7(2)	Z7(3)	Z7(4)

Continued

Main problem

Max X1*400 + X2*400 + X3*900 + X4*550 + X5*300 + X6*1000 + X7*1000 + Expected value of the "recourse" actions

such that $X1*50 + X2*60 + X3*85 + X4*45 + X5*60 + X6*150 + X7*150 \leq 350$ (2004 budgetary constraint)

Scenario 1 – Both licensing projects fail (occurs with a 15% probability)

Sub-problem: Max Y1(1)*200 + Y2(1)*300 + Y3(1)*850 + Y4(1)*450 +

Corrective action to the portfolio's NPV

2005 budgetary constraint:
 X1*45 + X2*45 + X3*65 + X4*35 + X5*60 + X6*(0) + X7*(0)
 +Y1(1)*50+Y2(1)*60 + Y3(1)*85 + Y4(1)*45 + Y5(1)*60 < 450

✤ Z6(1) = X6; Z7(1) = X7

Ensures that the a particular corrective action to the portfolio NPV will be made only if the licensing candidates were chosen in the first stage to begin with

- Scenario 2– Both licensing projects succeed (occurs with a 35% probability)
- Sub-problem: Max Y1(2)*200 + Y2(2)*300 + Y3(2)*850 + Y4(2)*450 +

✤ Z6(2) = X6; Z7(2) = X7

Ensures that the a particular corrective action to the portfolio NPV will be made only if the licensing candidates were chosen in the first stage to begin with

"Mutual exclusivity" and binary constraints

Scenario 3 – LC #1 succeeds, LC #2 fails (occurs with a 15% probability)

✤ Z6(3) = X6; Z7(3) = X7

Mutual Exclusivity and binary constraints

Scenario 4 – LC #1 fails, LC #2 succeeds (occurs with a 35% probability)

 ◆ 2005 budgetary constraint: X1*45 + X2*45 + X3*65 + X4*35 + X5*60 + X6*(0) + X7*(250)
 +Y1(4)*50+Y2(4)*60 + Y3(4)*85 + Y4(4)*45 + Y5(4)*60 ≤ 450

✤ Z6(4) = X6; Z7(4) = X7

Mutual Exclusivity and binary constraints

Complete formulation reduces to a large linear integer program

Max

X1*400 + X2*400 + X3*900 +X4*550 +X5*300 + X6*1000 + X7*1000

Y1(1)*200 + Y2(1)*300 + Y3(1)*850 + Y4(1)*450 +Y5(1)*150 - Z6(1)*(1000+150) - Z7(1)*(1000+150) *.15

Y1(2)*200 + Y2(2)*300 + Y3(2)*850 + Y4(2)*450 + Y5(2)*150 - Z6(2)*(0) - Z7(2)*(0) *.35

+

Y1(3)*200 + Y2(3)*300 + Y3(3)*850 + Y4(3)*450 + Y5(3)*150 - Z6(3)*(0) - Z7(3)*(1000+150)*.15

+ Y1(4)*200 + Y2(4)*300 + Y3(4)*850 + Y4(4)*450 +Y5(4)*150-Z6(4)*(1000+150) –Z7(4)*(0) *.15

ConstraintsX1*50 + X2*60 + X3*85 + X4*45 + X5*60 + X6*150 + X7*150 \leq 350(2004 budgetary constraint)

All the sub problem constraints

.