Making 56

Write a mathematical expression that equals exactly 56 using only the five numbers $1,1,1$, 2 , and 3 . Each of the numbers must be used exactly once. The numbers are not digits, so it is not permitted to combine 1 and 1 to make 11, for example.

Solution to Making 56

There are several different solutions to this brain teaser. The most straight-forward solution is as follows:

$$
\frac{2^{3!}}{((1+1+1)!)!}=\frac{8!}{6!}=56
$$

A somewhat more elegant way to write the same expression is to use the notation for combinations (aka binomial coefficient) - the number of unique combinations of N objects taken from a collection of M objects:

$$
\binom{2^{3}}{1+1+1}=\frac{8!}{5!\times 3!}=56
$$

Another solution utilizes an obscure mathematical function called the double factorial (see https://www.geeksforgeeks.org/double-factorial/), denoted "!!". The double factorial of a number is the product of all integers of the same parity (odd or even) less than or equal to that number. So, for example, $8!!=8 \times 6 \times 4 \times 2$. The solution is as follows:

$$
(3!+1) \times(2+1+1)!!=7 \times 8=56
$$

